SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vitelli Vincenzo) "

Sökning: WFRF:(Vitelli Vincenzo)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrat, Jean-Louis, et al. (författare)
  • Soft matter roadmap
  • 2024
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7639. ; 7:1
  • Forskningsöversikt (refereegranskat)abstract
    • Soft materials are usually defined as materials made of mesoscopic entities, often self-organised, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is enormous, and controlling or improving their properties is the focus of many efforts. From a fundamental perspective, the possibility of manipulating soft material properties, by tuning interactions between constituents and by applying external perturbations, gives rise to an almost unlimited variety in physical properties. Together with the relative ease to observe and characterise them, this renders soft matter systems powerful model systems to investigate statistical physics phenomena, many of them relevant as well to hard condensed matter systems. Understanding the emerging properties from mesoscale constituents still poses enormous challenges, which have stimulated a wealth of new experimental approaches, including the synthesis of new systems with, e.g. tailored self-assembling properties, or novel experimental techniques in imaging, scattering or rheology. Theoretical and numerical methods, and coarse-grained models, have become central to predict physical properties of soft materials, while computational approaches that also use machine learning tools are playing a progressively major role in many investigations. This Roadmap intends to give a broad overview of recent and possible future activities in the field of soft materials, with experts covering various developments and challenges in material synthesis and characterisation, instrumental, simulation and theoretical methods as well as general concepts.
  •  
2.
  • Vågberg, Daniel, 1983- (författare)
  • Jamming and Soft-Core Rheology
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Many different physical systems, such as granular materials, colloids, foams and emulsions exhibit a jamming transition where the system changes from a liquid-like flowing state to a solid jammed state as the packing fraction increases. These systems are often modeled using soft-core particles with repulsive contact forces. In this thesis we explore several different dynamical models for these kinds of systems, and see how they affect the behavior around the jamming transition. We investigate the effect of different types of dissipative forces on the rheology, and study how different methods of preparing a particle configuration affect their probability to jam when quenched. We study the rheology of sheared systems close to the jamming transition. It has been proposed that the athermal jamming transition is controlled by a critical point, point J, with certain scaling properties. We investigate this using multivariable scaling analysis based on renormalization group theory to explore the scaling properties of the transition and determine the position of point J and some of the critical exponents.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy