SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Volkmann I) "

Sökning: WFRF:(Volkmann I)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Ebrahimi-Fakhari, Darius, et al. (författare)
  • Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia
  • 2020
  • Ingår i: Brain. - OXFORD ENGLAND : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:10, s. 2929-2944
  • Tidskriftsartikel (refereegranskat)abstract
    • Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 +/- 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 +/- 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 +/- 5.1 years, SD) and later tetraplegia (mean age: 16.1 +/- 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 +/- 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 +/- 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.
  •  
13.
  •  
14.
  •  
15.
  • Krauss, Joachim K., et al. (författare)
  • Technology of deep brain stimulation : current status and future directions
  • 2021
  • Ingår i: Nature Reviews Neurology. - : Springer Nature. - 1759-4758 .- 1759-4766. ; 17:2, s. 75-87
  • Forskningsöversikt (refereegranskat)abstract
    • Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.
  •  
16.
  • Moro, Elena, et al. (författare)
  • Long-Term Results of a Multicenter Study on Subthalamic and Pallidal Stimulation in Parkinson's Disease
  • 2010
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 25:5, s. 578-586
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the 5 to 6 year follow-up of a multicenter study of bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) in advanced Parkinson's disease (PD) patients. Thirty-live STN patients and 16 GPi patienis were assessed at 5 to 6 years after DBS surgery. Primary outcome measure was the stimulation effect on the motor Unified Parkinson's Disease Rating Scale (UPDRS) assessed with a prospective cross-over double-blind assessment without medications (stimulation was randomly switched on or off). Secondary outcomes were motor UPDRS changes with unblinded assessments in off- and on-medication states with and without stimulation, activities of daily living (ADL), anti-PD medications, and dyskinesias. In double-blind assessment, both STN and GPi DBS were significantly effective in improving the motor UPDRS scores (STN. P < 0.0001, 45.4%; GPi, P = 0.008, 20.0%) compared with of regardless of the sequence of stimulation. In open assessment. both STN- and GPi-DBS significantly improved the off-medication motor UPDRS when compared with before surgery (STN. P < 0.001, 50.5%; GPi, P = 0.002, 35.6%). Dyskinesias and ADL were significantly improved in both groups. Anti-PD medications were significantly reduced only in the STN group. Adverse events were more frequent in the STN group. These results confirm the long-term efficacy of STN and GPi DBS advanced PD. Although the surgical targets were not randomized, there was a trend to 1 better outcome of motor signs in the STN-DBS patients and fewer adverse events in the GPi-DBS group. (C) 2010 Movement Disorder Society
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Schoch, C. L., et al. (författare)
  • A class-wide phylogenetic assessment of Dothideomycetes
  • 2009
  • Ingår i: Studies in mycology. - : Westerdijk Fungal Biodiversity Institute. - 0166-0616 .- 1872-9797. ; 64, s. 1-15
  • Forskningsöversikt (refereegranskat)abstract
    • We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon.
  •  
21.
  •  
22.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy