SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Voronov S. A.) "

Sökning: WFRF:(Voronov S. A.)

  • Resultat 1-50 av 137
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mayorov, A. G., et al. (författare)
  • Antiprotons of galactic cosmic radiation in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 602-605
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for antiproton selection against a background of electrons, based on a mathematical model of data classification using variations in interparticle interaction in a calorimeter, and a method for excluding events accompanied by scattering in the inner detectors of a tracking system (which result in errors in the measured trajectory's curvature and charge sign) from analysis are discussed in this paper. Antiproton spectra and antiproton/proton flux ratio at energies of 0.06 to 350 GeV with statistics of events surpassing those in [1] are obtained. The results can be used to create models for the generation and distribution of particles in the Galaxy, and for searching and studying the nature of hypothetical dark matter particles.
  •  
2.
  • Mayorov, A. G., et al. (författare)
  • Solar modulation of galactic cosmic rays during 2006-2015 based on PAMELA and ARINA data
  • 2017
  • Ingår i: International Conference On Particle Physics And Astrophysics. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • Solar modulation of galactic protons with energies from 50 MeV up to dozens of GeV during July '06 - January '16 studied based on a data of the magnetic spectrometer PAMELA and scintillation spectrometer ARINA. This period is interesting because it covers the end of 23(rd) and current 24(th) cycles of solar activity, including the abnormally long transient period and change of the polarity of solar magnetic field.
  •  
3.
  • Adriani, O., et al. (författare)
  • Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment
  • 2013
  • Ingår i: JETP Letters. - 0021-3640 .- 1090-6487. ; 96:10, s. 621-627
  • Tidskriftsartikel (refereegranskat)abstract
    • It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works.
  •  
4.
  • Bazilevskaya, G. A., et al. (författare)
  • Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 493-496
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer was launched into a near-Earth orbit on board the Resurs-DK1 satellite in June 2006; in December 2006, it recorded the last strong solar high-energy particle event of the 23rd solar cycle. A deficit was thereafter observed in solar energetic particle events because of the lengthy solar activity minimum and the weak evolution of the next (24th) solar cycle. As a result, only a few solar events involving protons with energies of more than 100 MeV were recorded between 2010 and 1012. This work presents the preliminary results from measurements of charged particle fluxes in these events, recorded by the Pamela spectrometer.
  •  
5.
  • Adriani, O., et al. (författare)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
6.
  • Bogomolov, E. A., et al. (författare)
  • Spectra of solar neutrons with energies of ~10–1000 MeV in the PAMELA experiment in the flare events of 2006–2015
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 132-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The first results from measuring the spectra of solar neutrons with energies of ~10–1000 MeV in the solar flares of 2006–2015 observed by the PAMELA international space experiment are presented. The PAMELA neutron detector with 3He counters and a moderator with an area of 0.18 m2 allows us to estimate the flux of solar neutrons during solar flares. Solar neutrons with energies of ~10–1000 MeV likely occurred in 21 out of the 24 analyzed flares of 2006–2015.
  •  
7.
  • Koldobskiy, S. A., et al. (författare)
  • Deuteron spectrum measurements under radiation belt with PAMELA instrument
  • 2016
  • Ingår i: Nuclear and Particle Physics Proceedings. - : Elsevier. - 2405-6014. ; 273-275, s. 2345-2347
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work the results of data analysis of the deuteron albedo radiation obtained in the PAMELA experiment are presented. PAMELA is an international space experiment carried out on board of the satellite Resurs DK-1. The high precision detectors allow to register and identify cosmic ray particles in a wide energy range. The albedo deuteron spectrum in the energy range 70 - 600 MeV/nucleon has been measured.
  •  
8.
  • Koldobskiy, S. A., et al. (författare)
  • Measurement of galactic cosmic-ray deuteron spectrum in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press. - 1062-8738. ; 77:5, s. 606-608
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the results of measuring the deuteron spectrum of Galactic cosmic rays (GCRs) with the PAMELA experiment. The PAMELA is an international experiment. Its main objectives are to search for antimatter and measure proton, helium nuclei, electron, and positron spectra over a wide range of energies. In addition, the experimental setup allows the detection of deuterons and the reconstruction of their spectra at low energies. Cosmic ray deuteron spectrum and the deuteron-proton ratio measured in the PAMELA experiment in the energy range of 50-650 MeV/nucleon are presented below.
  •  
9.
  • Koldobskiy, S. A., et al. (författare)
  • Solar modulation of cosmic deuteron fluxes in the PAMELA experiment
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 151-153
  • Tidskriftsartikel (refereegranskat)abstract
    • The preliminary results from measurements of deuteron fluxes in galactic cosmic rays (GCR) in the vicinity of the Earth in 2006–2009 are presented. The results are obtained by analyzing data from the PAMELA experiment aboard the Resurs DK-1 satellite. High-precision detection instruments provided an opportunity to identify GCR deuterons and measure their spectrum in the energy interval of 90–650MeV/nucleon. Spectra averaged over six-month intervals from the summer of 2006 to the summer of 2009 (the solar activity minimum) are presented. The influence of solar modulation on the observed spectrum is clearly seen in the results.
  •  
10.
  • Koldobskiy, S. A., et al. (författare)
  • Study of deuteron spectra under radiation belt with PAMELA instrument
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the results of measurements of proton and deuteron fluxes of albedo radiation in the Earth vicinity, obtained in the PAMELA experiment. PAMELA is an international experiment meant to study cosmic rays. PAMELA is carried out on board the satellite Resurs-DK1. High-precision equipment of the experiment allows registration and identification of cosmic ray particles of different varieties in a wide energy range. The albedo deuteron spectrum and albedo deuteron-to-proton fluxes ratio in the energy range 70 - 600 MeV/nucleon at altitude of 350 - 600 km for different geomagnetic latitudes is presented.
  •  
11.
  • Malakhov, V. V., et al. (författare)
  • Time variations of proton flux in Earth inner radiation belt during 23/24 solar cycles based on the PAMELA and the ARINA data.
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA and the ARINA experiments are carried out on the board of satellite RESURS-DK1 since 2006 up to now. Main goal of the PAMELA instrument is measurements of high energy antiparticles in cosmic rays while the ARINA instrument is intended studying high energy charged particle bursts in the magnetosphere. Both of these experiments have a possibility to study trapped particles in the inner radiation belt. Complex of these two instruments covers proton energy range from 30 MeV up to trapping limit (E= similar to 2 GeV). Continuous measurements with the PAMELA and the ARINA spectrometers include falling and rising phases of 23/24 solar cycles and maximum of 24th one. In this report we present temporal profiles of proton flux in the inner zone of the radiation belt (1.11 < L < 1.18, 0.18 < B < 0.22G). Dependence of proton fluxes on a magnitude of the solar activity was studied for various phases of 23/24 solar cycles. At that it was shown that proton fluxes at the solar minimum are several times greater than at the solar maximum.
  •  
12.
  • Mikhailov, V. V., et al. (författare)
  • Modulation of electrons and positrons in 2006–2015 in the PAMELA experiment
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 154-156
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer was launched aboard the Resurs DK-1 satellite into a nearpolar circumterrestrial orbit with an altitude of 350–600 km to study fluxes of the particles and antiparticles of cosmic rays in the wide energy range of ~80 MeV to several hundred gigaelectronvolts. The results from observations of temporal variations in electron and positron fluxes in 2006–2015 are presented. The ratio of electron and positron fluxes measured in this time interval reveals a dependence on the rigidity of particles, the solar activity, and the polarity of the solar magnetic field.
  •  
13.
  • Mikhailov, V. V., et al. (författare)
  • Secondary positrons and electrons in near-Earth space in the PAMELA experiment
  • 2017
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press Incorporation. - 1062-8738. ; 81:2, s. 203-205
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluxes of electrons and positrons with energies above ~100 MeV in the near-Earth space are measured with the PAMELA magnetic spectrometer aboard the Resurs DK-1 satellite launched on June 15, 2006, into a quasipolar orbit with an altitude of 350–600 km and an inclination of 70°. Calculating the trajectories of detected electrons and positrons in the magnetosphere of the Earth allows us to determine their origin and isolate particles produced during interaction between cosmic rays and the residual atmosphere. Spatial distributions of albedo, quasitrapped, and trapped (in the radiation belt) positrons and electrons are presented. The ratio of positron and electron fluxes suggests that the fluxes of trapped particles of the radiation belt and quasitrapped secondary particles have different mechanisms of formation.
  •  
14.
  • Mikhailov, V. V., et al. (författare)
  • Trapped Positrons and Electrons in the Inner Radiation Belt According to Data of the PAMELA Experiment
  • 2018
  • Ingår i: Physics of Atomic Nuclei. - : PLEIADES PUBLISHING INC. - 1063-7788 .- 1562-692X. ; 81:4, s. 515-519
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of secondary-electron and secondary-positron fluxes below the geomagnetic cutoff in near-Earth space were performed by means of the PAMELA magnetic spectrometer installed on board the Resurs-DK1 satellite launched on June 15, 2006, in an elliptical orbit of inclination 70A degrees and altitude 350 to 600 km. This spectrometer permits measuring the fluxes of electrons and positrons over a wide energy range, as well as determining their spatial distributions to a precision of about 2A degrees. A calculation of particle trajectories in the geomagnetic field makes it possible to separate electrons and positrons originating from cosmic-ray interactions in the Earth's magnetosphere. The spatial distributions of quasitrapped, trapped, and short-lived albedo positrons and electrons of energy above 70 MeV in the radiation belt were analyzed. The ratio of the electron-to-positron fluxes and the energy spectra of the electrons and positrons in question are indicative of different productionmechanisms for stably trapped and quasitrapped secondary particles.
  •  
15.
  • Adriani, O., et al. (författare)
  • Cosmic-Ray Positron Energy Spectrum Measured by PAMELA
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:8, s. 081102-
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009, approximately 24 500 positrons were observed. The results cannot be easily reconciled with purely secondary production, and additional sources of either astrophysical or exotic origin may be required.
  •  
16.
  • Karelin, A. V., et al. (författare)
  • North-south asymmetry for high-energy cosmic-ray electrons measured with the PAMELA experiment
  • 2013
  • Ingår i: Journal of Experimental and Theoretical Physics. - 1063-7761 .- 1090-6509. ; 117:2, s. 268-273
  • Tidskriftsartikel (refereegranskat)abstract
    • The north-south asymmetry for cosmic-ray particles was measured with one instrument of the PAMELA satellite-borne experiment in the period June 2006-May 2009. The analysis has been performed by two independent methods: by comparing the count rates in regions with identical geomagnetic conditions and by comparing the experimental distribution of particle directions with the simulated distribution that would be in the case of an isotropic particle flux. The dependences of the asymmetry on energy release in the PAMELA calorimeter and on time have been constructed. The asymmetry (N (n) - N (s) )/(N (n) + N (s) ) is 0.06 +/- 0.004 at the threshold energy release in the calorimeter and gradually decreases with increasing energy release. The observed effect is shown to be produced by electrons in the energy range 10-100 GeV.
  •  
17.
  • Koldobskiy, S. A., et al. (författare)
  • Galactic deuteron spectrum measured in PAMELA experiment
  • 2013
  • Ingår i: 23Rd European Cosmic Ray Symposium (And 32Nd Russian Cosmic Ray Conference). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Results of galactic deuteron spectrum measurement by means of PAMELA apparatus are described. PAMELA is an international experiment developed for antimatter search and measurement of p, He, electron and positron spectra in wide energy range. In addition, PAMELA allows to identify and measure deuteron spectrum at low energies. In this paper deuteron-to-proton ratio and deuteron spectrum are presented.
  •  
18.
  • Koldobskiy, S., et al. (författare)
  • Measuring the albedo deuteron flux in the PAMELA satellite experiment
  • 2015
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 294-297
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of measuring albedo deuteron fluxes in the vicinity of the Earth are presented. The data were obtained in the PAMELA experiment conducted aboard the Resurs DK-1 artificial Earth satellite. High-precision detectors of the instrument setup allow us to identify albedo deuterons and measure their spectra in the energy interval from 70 to 600 MeV/nucleon at altitudes of 350–600 km for different geomagnetic latitudes.
  •  
19.
  • Mikhailov, V., et al. (författare)
  • Cosmic ray electron and positron spectra measured with PAMELA
  • 2013
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 409:1, s. 012035-
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment is carried out on board of the satellite Resurs DK1 launched on June 15th 2006 on polar orbit (the inclination is 70, the altitude is 350-600 km). The instrument which consists of magnetic spectrometer, silicon-tungsten imaging electromagnetic calorimeter gives a possibility to measure electron and positron fluxes over wide energy range from hundreds MeVs to hundreds GeVs. Measurements made in June 2006- January 2010 are presented and compared with other results and models. Positron spectrum appears to be harder than standard diffusive propagation models predict.
  •  
20.
  • Mikhailov, V V, et al. (författare)
  • Cosmic ray electron and positron spectrum with the PAMELA experiment
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA magnetic spectrometer, located on board the Resurs-DK1 satellite on Earth polar orbit with altitude of 350-600 km, measured the fluxes of cosmic ray particles and antiparticles in a wide energy range from 50 MeV to several TeVs. In this paper new results on the "all-electron" (sum electrons and positrons) spectrum are presented. New improved analysis on the full data set from 2006 to 2016 allows a significant increase in statistic compared to previously published results and an extension of energy interval up to 1 TeV. 
  •  
21.
  • Mikhailov, V. V., et al. (författare)
  • Galactic Cosmic Ray Electrons and Positrons over a Decade of Observations in the PAMELA Experiment
  • 2019
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Pleiades Publishing. - 1062-8738. ; 83:8, s. 974-976
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA magnetic spectrometer was launched onboard the Resurs-DK1 satellite into a near-polar Earth orbit with an altitude of 350–600 km, in order to study fluxes of cosmic ray particles and antiparticles in the wide energy range of ~80 MeV to hundreds of GeV. The results from observations of electron and positron fluxes in 2006–2016 are presented.
  •  
22.
  • Munini, R., et al. (författare)
  • Short-term variation in the galactic cosmic ray intensity measured with the PAMELA experiment
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • New results on the galactic cosmic ray (GCR) short-term intensity variation associated with Forbush decrease and co-rotating interaction regions (CIRs) measured by the PAMELA instrument between November 2006 and March 2007 are presented. Most of the past measurements on Forbush decrease events were carried out with neutron monitor detector. This tecnique allows only indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease associated with the December 13th coronal mass ejection (CME) was studied in a wide rigidity range (0.4 - 20 GV) and for different species of GCRs detected directly in space. Using GCR protons, the amplitude and the recovery time of the Forbush decrease were studied for ten rigidity interval with a temporal resolution of one day. For comparison the helium and the electron intensity over time were also studied. The temporal evolution of the helium and proton intensity was found in good agreement while the electrons show, on average, a faster recovery time. This was interpreted as a charge-sign dependence introduced by drift motion experienced by the low rigidity (< 5 GV) GCRs during their propagation through the heliosphere. Moreover a clear 13.5 days cyclical variation was observed in the GCR proton intensity after the Forbush decrease. This phenomena could be interpreted as an effect of prominent structures of compressed plasma in the solar wind, i.e. CIRs, or to the latitudinal gradient due to the crossing of the heliospheric current sheet (HCS). 
  •  
23.
  • Adriani, O., et al. (författare)
  • Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment
  • 2013
  • Ingår i: Astrophysical Journal. - : IOP Publishing. - 0004-637X .- 1538-4357. ; 770:1, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV /n for hydrogen and between 100 and 900 MeV /n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.
  •  
24.
  • Adriani, O., et al. (författare)
  • Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter
  • 2013
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 51:2, s. 219-226
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new measurement of the cosmic ray proton and helium spectra by the PAMELA experiment performed using the "thin" (in terms of nuclei interactions) sampling electromagnetic calorimeter. The described method, optimized by using Monte Carlo simulation, beam test and experimental data, allows the spectra to be measured up to 10 TeV, thus extending the PAMELA observational range based on the magnetic spectrometer measurement.
  •  
25.
  • Adriani, O., et al. (författare)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
26.
  • Adriani, O., et al. (författare)
  • Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 116:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.
  •  
27.
  • Adriani, O., et al. (författare)
  • Time Dependence Of The Proton Flux Measured By Pamela During The 2006 July-2009 December Solar Minimum
  • 2013
  • Ingår i: Astrophysical Journal. - : IOP Publishing. - 0004-637X .- 1538-4357. ; 765:2, s. 91-
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmic radiation must therefore include the transport and modulation of cosmic rays inside the heliosphere. During the end of the last decade, the Sun underwent a peculiarly long quiet phase well suited to study modulation processes. In this paper we present proton spectra measured from 2006 July to 2009 December by PAMELA. The large collected statistics of protons allowed the time variation to be followed on a nearly monthly basis down to 400 MV. Data are compared with a state-of-the-art three-dimensional model of solar modulation.
  •  
28.
  • Bruno, A., et al. (författare)
  • Geomagnetically trapped, albedo and solar energetic particles : Trajectory analysis and flux reconstruction with PAMELA
  • 2017
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 60:4, s. 788-795
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.
  •  
29.
  • Bruno, A., et al. (författare)
  • Solar energetic particle events : Trajectory analysis and flux reconstruction with PAMELA
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of science.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.
  •  
30.
  • Casolino, M., et al. (författare)
  • Cosmic-ray observations of the heliosphere with the PAMELA experiment
  • 2006
  • Ingår i: Astrophysics. - : Elsevier BV. ; , s. 1848-1852
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a multi-purpose apparatus built around a permanent magnet spectrometer, with the main goal of studying in detail the antiparticle component of cosmic rays. The apparatus will be carried in space by means of a Russian satellite, due to launch in 2005, for a three year-long mission. The characteristics of the detectors composing the instrument, alongside the long lifetime of the mission and the orbital characteristics of the satellite, will allow to address several items of cosmic-ray physics. In this paper, we will focus on the solar and heliospheric observation capabilities of PAMELA.
  •  
31.
  •  
32.
  • Karelin, A. V., et al. (författare)
  • Measurement of electron-positron spectrum in high-energy cosmic rays in the PAMELA experiment
  • 2015
  • Ingår i: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • At present the existing data on the cosmic ray electron energy spectra in the high energy range are fragmented, and the situation is exacerbated by their small number. In the satellite PAMELA experiment measurements at high energies are carried out by the calorimeter. The experimental data accumulated for more than 8 years of measurements, with the information of the calorimeter, the neutron detector and the scintillation counters made it possible to obtain the total spectrum of high-energy electrons and positrons in energy range 0.3-3 TeV.
  •  
33.
  • Karelin, A. V., et al. (författare)
  • Measurement of the large-scale anisotropy of cosmic rays in the PAMELA experiment
  • 2015
  • Ingår i: JETP Letters. - 0021-3640 .- 1090-6487. ; 101:5, s. 295-298
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale anisotropy or so-called sidereal-diurnal wave has been detected in the PAMELA satellite experiment in the time interval of 2006–2014. The magnitude of anisotropy has been measured simultaneously for the Southern and Northern Hemispheres in the equatorial coordinate system. The results confirm the data of ground-based experiments.
  •  
34.
  • Karelin, A. V., et al. (författare)
  • Measuring the spectra of high-energy cosmic-ray particles in the PAMELA experiment
  • 2015
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 289-293
  • Tidskriftsartikel (refereegranskat)abstract
    • The available data on the energy spectra of electrons, protons, and helium nuclei in the high-energy region are fragmentary, a situation made worse by their scarcity. Due to limitations imposed on the use of the magnetic spectrometer in the PAMELA satellite experiment, the calorimeter must be used for measurements performed in the high-energy region. The processing of experimental data accumulated in more than eight years of measurements with the calorimeter, neutron detector, and scintillation counters allows the spectra of high-energy particles to be obtained, greatly expanding our understanding of the nature of primary cosmic rays.
  •  
35.
  • Karelin, A. V., et al. (författare)
  • New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with the calorimeter in the PAMELA experiment
  • 2014
  • Ingår i: Journal of Experimental and Theoretical Physics. - 1063-7761 .- 1090-6509. ; 119:3, s. 448-452
  • Tidskriftsartikel (refereegranskat)abstract
    • New measurements of the energy spectra of cosmic-ray protons and helium nuclei with significantly increased statistics owing to an improvement of the event selection technique and the involvement of all data over the period 2006-2013 in the analysis have been made at energies above 0.8 TeV/nucleon with a position-sensitive calorimeter based on data from the PAMELA satellite-borne experiment.
  •  
36.
  • Koldobskiy, S. A., et al. (författare)
  • Measurement of trapped and quasitrapped deuteron populations in PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The results of measurements of trapped and albedo cosmic ray deuteron fluxes obtained in the PAMELA experiment are presented in this work. The PAMELA is an international experiment aimed for measurements of cosmic ray particle fluxes in wide energy range. In particular, analysis of PAMELA data gives possibility to identify deuterons and to reconstruct deuteron spectra of different origin (galactic cosmic ray, re-entrant albedo and radiation belt particles). The first results of trajcectory reconstruction for trapped and albedo deuterons are presented in this work. This investigation was done by solving equations of particle motion in Earth's magnetic field by means of numerical integration methods.
  •  
37.
  • Martucci, M., et al. (författare)
  • Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 158-161
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
  •  
38.
  • Martucci, M., et al. (författare)
  • Magnetospheric effects on high-energy solar particles during the 2012 May 17th event measured with the PAMELA experiment
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The great challenge in constraining scenarios for solar energetic particle (SEP) acceleration is due to the fact that the signatures of acceleration itself are heavily modified by transport within interplanetary space. During transport, SEPs are subject to pitch angle scattering by the turbulent magnetic field, adiabatic focusing, or reflecting magnetic structures. Ground Level Enhancements (GLEs) provide an ideal way to study acceleration with minimal transport. In this work, we present a unique high-energy SEP observation from PAMELA of the 2012 May 17 GLE and interpret the observed pitch angle distributions as a result of local scattering (1 AU) by the Earth's magnetosheath.
  •  
39.
  • Mikhailov, V., et al. (författare)
  • Measurements of electron and positron fluxes below the geomagnetic cutoff by the PAMELA magnetic spectrometer
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • We present a measurements of electron and positron fluxes below the geomagnetic cutoff rigidity in wide energy range from 50 MeV to several GeVs by the PAMELA magnetic spectrometer. The instrument was launched on June 15th 2006 on-board the Resurs-DK satellite on low orbit with 70 degrees inclination and altitude between 350 and 600 km. Features of spatial distributions of secondary electrons and positrons in the near Earth space, including the South Atlantic Anomaly, were investigated in terms of lifetime and geographical origin. The separation in stably trapped, long lifetime quasi-trapped, and short lifetime albedo components was performed on base of back tracing procedure in geomagnetic field. A significant difference in relative abundance of positrons with respect to electrons is seen for the stable trapped and the quasi-trapped populations what pointing out on differences in trapping mechanism of those populations. 
  •  
40.
  • Mikhailov, V. V., et al. (författare)
  • Cosmic ray electrons and positrons over decade with the PAMELA experiment
  • 2019
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment has measured cosmic ray particles and antiparticles fluxes at Earth orbit from June 2006 till January 2016 onboard the Resurs-DK1 satellite. Measurements were carried out during the solar minimum of 23 solar cycle with negative polarity A < 0 of heliospheric magnetic field till the beginning of 24 cycle with positive polarity A > 0. In this paper, the results of observations of electron and positron fluxes are presented in wide energy range from several hundreds MeVs till several TeVs These measurements provide important information to study cosmic ray sources and propagation in Galaxy and heliosphere.
  •  
41.
  • Mikhailov, V. V., et al. (författare)
  • Searching for anisotropy of positrons and electrons in the PAMELA experiment
  • 2015
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 298-301
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment has been under way aboard the Resurs DK-1 satellite since June 2006. The results have revealed an increase in the ratio of the positron intensity to the total electron and positron intensity at energies in excess of 10 GeV. This increase suggests an additional source of cosmic rays that is associated with either some astrophysical objects (e.g., pulsars) or the probable annihilation of particles of dark matter. Local positron sources can produce notable anisotropy in their flux. The results from the search for anisotropy of positrons and electrons in the events detected by the PAMELA experiment in the 2006–2013 timeframe are described in detail in this work.
  •  
42.
  • Mikhailov, V. V., et al. (författare)
  • Sharp increasing of positron to electron fluxes ratio below 2 GV measured by the PAMELA
  • 2017
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 798:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic spectrometer PAMELA was launched onboard a satellite Resurs-DK1 into low-Earth polar orbit with altitude 350-600 km to study cosmic ray antiparticle fluxes in a wide energy range from ∼ 100 MeV to hundreds GeV. This paper presents the results of observations of temporal variations of the positron and electron fluxes in the 2006-2015. The ratio of the positron and electron fluxes below 2 GV shows sharp increasing since 2014 due to changing of the polarity of the solar magnetic field.
  •  
43.
  • Munini, R., et al. (författare)
  • Evidence of Energy and Charge Sign Dependence of the Recovery Time for the 2006 December Forbush Event Measured by the PAMELA Experiment
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 853:1
  • Tidskriftsartikel (refereegranskat)abstract
    • New results on the short-term galactic cosmic-ray (GCR) intensity variation (Forbish decrease) in 2006 December measured by the PAMELA instrument are presented. Forbush decreases are sudden suppressions of the GCR intensities, which are associated with the passage of interplanetary transients such as shocks and interplanetary coronal mass ejections (ICMEs). Most of the past measurements of this phenomenon were carried out with groundbased detectors such as neutron monitors or muon telescopes. These techniques allow only the indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease, commencing on 2006 December 14 and following a CME at the Sun on 2006 December 13, was studied in a wide rigidity range (0.4-20 GV) and for different species of GCRs detected directly in space. The daily averaged GCR proton intensity was used to investigate the rigidity dependence of the amplitude and the recovery time of the Forbush decrease. Additionally, for the first time, the temporal variations in the helium and electron intensities during a Forbush decrease were studied. Interestingly, the temporal evolutions of the helium and proton intensities during the Forbush decrease were found to be in good agreement, while the low rigidity electrons (<2 GV) displayed a faster recovery. This difference in the electron recovery is interpreted as a charge sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere.
  •  
44.
  • Munini, R., et al. (författare)
  • Solar modulation of galactic cosmic rays electrons and positrons over the 23rd solar minimum with the pamela experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with an unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The satellite quasi-polar orbit, with an inclination of 70 degrees, allows particles to be measure down to 100 MeV/n. This makes the instrument suited for the investigation of phenomena related to galactic cosmic ray solar modulation in the inner heliosphere. Data for oppositely charged particles were collected from 2006 to 2009, during the A< 0 solar minimum of solar cycle 23. The time and rigidity dependence of galactic cosmic ray electron and positron fluxes were measured. These fluxes provide important information for the study of charge dependent solar modulation effects. 
  •  
45.
  • Ricci, M., et al. (författare)
  • Study on 2012 march 7 solar particle event and forbush decrease with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astro-physics) space-borne experiment was launched on 15 June 2006 and has been continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. The on-board instrumentation is built around a permanent magnet with a silicon microstrip tracker, providing charge and track detection information. During solar maximum conditions of solar cycle 24, PAMELA has been providing key information about solar energetic particles (SEPs) and their influence at Earth. We discuss here the recent 2012 March 7 SEP event with a brief comment on the subsequent Forbush decrease, registered by PAMELA. This event was also observed by Fermi/LAT exhibiting unprecedented time-extended γ-ray emission (> 100 MeV) lasting nearly 20 hours. We compare the derived accelerated ion population at the Sun with the ion population measured in space by PAMELA and discuss the implications for particle acceleration. 
  •  
46.
  • Adriani, O., et al. (författare)
  • Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV
  • 2011
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:20, s. 201101-
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e(-) have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 +/- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.
  •  
47.
  • Adriani, O., et al. (författare)
  • Measurement of Boron and Carbon Fluxes in Cosmic Rays with the Pamela Experiment
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 791:2, s. 93-
  • Tidskriftsartikel (refereegranskat)abstract
    • The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.
  •  
48.
  • Bongi, M, et al. (författare)
  • PAMELA : A satellite experiment for antiparticles measurement in cosmic rays
  • 2004
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 51:3, s. 854-859
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10(-8). The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.
  •  
49.
  • Carbone, R., et al. (författare)
  • Pamela observation of the 2012 may 17 gle event
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from a few hundred MeV/n up to hundred GeV/n. This wide interval of measured energies makes PAMELA a unique instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). PAMELA has registered many SEP events in solar cycle 24 including the 2012 May 17 GLE event (GLE 71), offering unique opportunities to address the question of high-energy SEP origin. Experimental performances and preliminary results on the 2012 May 17 events will be presented. We will discuss the derived particle injection time and compare with other time scales at the Sun including the flare and CME onset times. 
  •  
50.
  • Casolino, M., et al. (författare)
  • New upper limit on strange quark matter flux with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • In this work we present a new upper limit for anomalous charge / mass (Z/A) particles with PAMELA experiment. These particles would exhibit a low velocity in the Time-of-Flight system and an high rigidity in the tracker. The redundant nature of the PAMELA detectors make it particularly suited to search for these particles in a mass number (10 ≤ A ≤ 105), charge (1≤ Z ≤ 8) and rigidity (0.4 ≤ R ≤ 1200 GV) range complementary to those of ground-based experiments. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 137

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy