SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vorrsjö Evelina) "

Sökning: WFRF:(Vorrsjö Evelina)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kroupa, Olessia, et al. (författare)
  • Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue.
  • 2012
  • Ingår i: BMC physiology. - : Springer Science and Business Media LLC. - 1472-6793. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Background: Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoproteins and makes fatty acids available for tissue metabolism. The activity of the enzyme is modulated in a tissue specific manner by interaction with other proteins. We have studied how feeding/fasting and some related perturbations affect the expression, in rat adipose tissue, of three such proteins, LMF1, an ER protein necessary for folding of LPL into its active dimeric form, the endogenous LPL inhibitor ANGPTL4, and GPIHBP1, that transfers LPL across the endothelium. Results: The system underwent moderate circadian oscillations, for LPL in phase with food intake, for ANGPTL4 and GPIHBP1 in the opposite direction. Studies with cycloheximide showed that whereas LPL protein turns over rapidly, ANGPTL4 protein turns over more slowly. Studies with the transcription blocker Actinomycin D showed that transcripts for ANGPTL4 and GPIHBP1, but not LMF1 or LPL, turn over rapidly. When food was withdrawn the expression of ANGPTL4 and GPIHBP1 increased rapidly, and LPL activity decreased. On re-feeding and after injection of insulin the expression of ANGPTL4 and GPIHBP1 decreased rapidly, and LPL activity increased. In ANGPTL4−/− mice adipose tissue LPL activity did not show these responses. In old, obese rats that showed signs of insulin resistance, the responses of ANGPTL4 and GPIHBP1 mRNA and of LPL activity were severely blunted (at 26 weeks of age) or almost abolished (at 52 weeks of age). Conclusions: This study demonstrates directly that ANGPTL4 is necessary for rapid modulation of LPL activity in adipose tissue. ANGPTL4 message levels responded very rapidly to changes in the nutritional state. LPL activity always changed in the opposite direction. This did not happen in Angptl4−/− mice. GPIHBP1 message levels also changed rapidly and in the same direction as ANGPTL4, i.e. increased on fasting when LPL activity decreased. This was unexpected because GPIHBP1 is known to stabilize LPL. The plasticity of the LPL system is severely blunted or completely lost in insulin resistant rats.
  •  
2.
  • Larsson, Mikael, et al. (författare)
  • Apolipoproteins C-I and C-III Inhibit Lipoprotein Lipase Activity by Displacement of the Enzyme from Lipid Droplets
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 288:47, s. 33997-34008
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoproteins (apo) C-I and C-III are known to inhibit lipoprotein lipase (LPL) activity, but the molecular mechanisms for this remain obscure. We present evidence that either apoC-I or apoC-III, when bound to triglyceride-rich lipoproteins, prevent binding of LPL to the lipid/water interface. This results in decreased lipolytic activity of the enzyme. Site-directed mutagenesis revealed that hydrophobic amino acid residues centrally located in the apoC-III molecule are critical for attachment to lipid emulsion particles and consequently inhibition of LPL activity. Triglyceride-rich lipoproteins stabilize LPL and protect the enzyme from inactivating factors such as angiopoietin-like protein 4 (angptl4). The addition of either apoC-I or apoC-III to triglyceride-rich particles severely diminished their protective effect on LPL and rendered the enzyme more susceptible to inactivation by angptl4. These observations were seen using chylomicrons as well as the synthetic lipid emulsion Intralipid. In the presence of the LPL activator protein apoC-II, more of apoC-I or apoC-III was needed for displacement of LPL from the lipid/water interface. In conclusion, we show that apoC-I and apoC-III inhibit lipolysis by displacing LPL from lipid emulsion particles. We also propose a role for these apolipoproteins in the irreversible inactivation of LPL by factors such as angptl4.
  •  
3.
  • Makoveichuk, Elena, et al. (författare)
  • Inactivation of lipoprotein lipase in 3T3-L1 adipocytes by angiopoietin-like protein 4 requires that both proteins have reached the cell surface
  • 2013
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier. - 0006-291X .- 1090-2104. ; 441:4, s. 941-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoprotein lipase (LPL) and angiopoietin-like protein 4 (Angptl4) were studied in 3T3-L1 adipocytes. Transfections of the adipocytes with Angptl4 esiRNA caused reduction of the expression of Angptl4 to about one fourth of that in cells treated with vehicle only. This resulted in higher levels of LPL activity both on cell surfaces (heparin-releasable) and in the medium, while LPL activity within the cells remained unaffected. This demonstrated that even though both proteins are made in the same cell, Angptl4 does not inactivate LPL during intracellular transport. Most of the Angptl4 protein was present as covalent dimers and tetramers on cell surfaces, while within the cells there were only monomers. LPL gradually lost activity when incubated in medium, but there was no marked difference between conditioned medium from normal cells (rich in Angptl4) and medium after knockdown of Angptl4. Hence Angptl4 did not markedly accelerate inactivation of LPL in the medium. Experiments with combinations of different cells and media indicated that inactivation of LPL occurred on the surfaces of cells producing Angptl4. (C) 2013 Elsevier Inc. All rights reserved.
  •  
4.
  • Makoveichuk, Elena, et al. (författare)
  • TNF-alpha decreases lipoprotein lipase activity in 3T3-L1 adipocytes by up-regulation of angiopoietin-like protein 4
  • 2017
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier. - 1388-1981 .- 1879-2618. ; 1862:5, s. 533-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoprotein lipase (LPL) hydrolyzes lipids in plasma lipoproteins so that the fatty acids can be taken up and used by cells. The activity of LPL changes rapidly in response to changes in nutrition, physical activity and other conditions. Angiopoietin-like protein 4 (ANGPTL4) is an important controller of LPL activity. Both LPL and ANGPTL4 are produced and secreted by adipocytes. When the transcription blocker Actinomycin D was added to cultures of 3T3-L1 adipocytes, LPL activity in the medium increased several-fold. LPL mRNA decreased moderately during 5 h, while ANGPTL4 mRNA and protein declined rapidly, explaining that LPL activity was increased. TNF-alpha is known to reduce LPL activity in adipose tissue. We have shown that TNF-a increased ANGPTL4 both at the mRNA and protein level. Expression of ANGPTL4 is known to be under control of Foxol. Use of the Foxol-specific inhibitor AS1842856, or knockdown of ANGPTL4 by RNAi, resulted in increased LPL activity in the medium. Both with ActD and with the Foxol inhibitor the cells became unresponsive to TNF-a. This study shows that TNF-a, by a Foxol dependent pathway, increases the transcription of ANGPTL4 which is secreted by the cells and causes inactivation of LPL.
  •  
5.
  • Nyrén, Rakel, et al. (författare)
  • Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas : effects of diet and leptin deficiency
  • 2012
  • Ingår i: BMC Physiology. - : BioMed Central (BMC). - 1472-6793. ; 12, s. 14-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins and enables uptake of lipolysis products for energy production or storage in tissues. Our aim was to study the localization of LPL and its endothelial anchoring protein glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in mouse pancreas, and effects of diet and leptin deficiency on their expression patterns. For this, immunofluorescence microscopy was used on pancreatic tissue from C57BL/6 mouse embryos (E18), adult mice on normal or high-fat diet, and adult ob/ob-mice treated or not with leptin. The distribution of LPL and GPIHBP1 was compared to insulin, glucagon and CD31. Heparin injections were used to discriminate between intracellular and extracellular LPL.RESULTS: In the exocrine pancreas LPL was found in capillaries, and was mostly co-localized with GPIHBP1. LPL was releasable by heparin, indicating localization on cell surfaces. Within the islets, most of the LPL was associated with beta cells and could not be released by heparin, indicating that the enzyme remained mostly within cells. Staining for LPL was found also in the glucagon-producing alpha cells, both in embryos (E18) and in adult mice. Only small amounts of LPL were found together with GPIHBP1 within the capillaries of islets. Neither a high fat diet nor fasting/re-feeding markedly altered the distribution pattern of LPL or GPIHBP1 in mouse pancreas. Islets from ob/ob mice appeared completely deficient of LPL in the beta cells, while LPL-staining was normal in alpha cells and in the exocrine pancreas. Leptin treatment of ob/ob mice for 12 days reversed this pattern, so that most of the islets expressed LPL in beta cells.CONCLUSIONS: We conclude that both LPL and GPIHBP1 are present in mouse pancreas, and that LPL expression in beta cells is dependent on leptin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy