SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vranken Wim) "

Sökning: WFRF:(Vranken Wim)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dolcemascolo, Roswitha, et al. (författare)
  • Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria
  • 2024
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
  •  
2.
  • Hatos, Andras, et al. (författare)
  • DisProt : intrinsic protein disorder annotation in 2020
  • 2020
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 48:D1, s. D269-D276
  • Tidskriftsartikel (refereegranskat)abstract
    • The Database of Protein Disorder (DisProt, URL:https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.
  •  
3.
  • Horton, Tammy, et al. (författare)
  • Improving nomenclatural consistency: a decade of experience in the World Register of Marine Species
  • 2017
  • Ingår i: European journal of taxonomy. - : Museum National D'Histoire Naturelle. - 2118-9773. ; 389, s. 1-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The World Register of Marine species (WoRMS) has been established for a decade. The early history of the database involved compilation of existing global and regional species registers. This aggregation, combined with changes to data types and the changing needs of WoRMS users, has resulted in an evolution of data-entry consistency over time. With the task of aggregating the accepted species names for all marine species approaching completion, our focus has shifted to improving the consistency and quality of data held while keeping pace with the addition of > 2000 new marine species described annually. This paper defines priorities and longer-term aims that promote standardisation within and interoperability among biodiversity databases, provides editors with further information on how to input nomenclatural data in a standardised way and clarifies for users of WoRMS how and why names are represented as they are. We 1) explain the categories of names included; 2) list standard reasons used to explain why a name is considered ‘unaccepted’ or ‘uncertain’; 3) present and explain the more difficult situations encountered; 4) describe categories of sources and notes linked to a taxon; and 5) recommend how type material, type locality and environmental information should be entered.
  •  
4.
  • Piovesan, Damiano, et al. (författare)
  • DisProt 7.0 : a major update of the database of disordered proteins
  • 2017
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 45:D1, s. d219-D227
  • Tidskriftsartikel (refereegranskat)abstract
    • The Database of Protein Disorder (DisProt, URL: www.disprot.org) has been significantly updated and upgraded since its last major renewal in 2007. The current release holds information on more than 800 entries of IDPs/IDRs, i.e. intrinsically disordered proteins or regions that exist and function without a well-defined three-dimensional structure. We have re-curated previous entries to purge DisProt from conflicting cases, and also upgraded the functional classification scheme to reflect continuous advance in the field in the past 10 years or so. We define IDPs as proteins that are disordered along their entire sequence, i.e. entirely lack structural elements, and IDRs as regions that are at least five consecutive residues without well-defined structure. We base our assessment of disorder strictly on experimental evidence, such as X-ray crystallography and nuclear magnetic resonance ( primary techniques) and a broad range of other experimental approaches (secondary techniques). Confident and ambiguous annotations are highlighted separately. DisProt 7.0 presents classified knowledge regarding the experimental characterization and functional annotations of IDPs/IDRs, and is intended to provide an invaluable resource for the research community for a better understanding structural disorder and for developing better computational tools for studying disordered proteins.
  •  
5.
  • von der Lieth, Claus-Wilhelm, et al. (författare)
  • EUROCarbDB : an open-access platform for glycoinformatics
  • 2011
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 0959-6658 .- 1460-2423. ; 21:4, s. 493-502
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocarb.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy