SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wågberg Thomas) "

Sökning: WFRF:(Wågberg Thomas)

  • Resultat 1-50 av 278
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindh, E. Mattias, 1986- (författare)
  • On the operation of light-emitting electrochemical cells
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • We are in the midst of a technological revolution that permeates nearly all human activities; artificial light is one of the most visible contributors in this societal change. If more efficient, green, and versatile light sources can be developed, they might improve the life of millions of people around the world while causing minimal damage to our climate and environment. The unique operational mechanism of the light-emitting electrochemical cell (LEC) makes it an ideal fit for some unconventional and emerging uses of light, in for example medicine and security.By exploiting this operational mechanism, in which mobile ions enable electrochemical doping of a luminescent polymer, we have designed and fabricated new bilayer LEC architectures. The bilayer LEC features patterned light emission that is easily adjustable during fabrication, and that can be configured to suit new applications of light. Given the light-emitting nature of the LEC, it is somewhat surprising that the optical understanding of its operation is rather limited. To fill this knowledge gap, we investigate how the optical properties of the luminescent polymer respond to electrochemical doping. We find that the complex-refractive index spectrum in the active layer of an LEC, as a direct result of the doping, varies in both space and time. The thin-film structure of an LEC implies that computational predictions of its luminous output need to consider internal reflections and interference. Finally, we implement a doping dependent optical thin-film simulation model. It enables us to precisely replicate the experimental luminance and angle-dependent emission spectrum for a range of LECs with different thicknesses. Using the model we can also identify and quantify many of the different optical loss mechanisms in LECs, which has not previously been done. The insights that we have collected on the path towards our present model will be useful for computational determination of device parameters that are otherwise difficult to acquire.The improved understanding of the optical operation of LECs is important for the maturation of the technology, as it facilitates formulation of relevant and accurate research questions. Hopefully, our results will accelerate the development of the field, so that useful products based on this technology can become available in the not too distant future.
  •  
2.
  • Sundqvist, Bertil, et al. (författare)
  • Physical properties of pressure polymerized C60
  • 1996
  • Ingår i: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, volume 3. - Pennington, NJ : The Electrochemical Society. - 1566771625 ; , s. 1014-1028
  • Konferensbidrag (refereegranskat)abstract
    • We present in this paper an overview of the physical properties of the high pressure polymerized C60 phase commonly known as "soft fcc". This phase has been studied by several methods over wide ranges in temperature T and/or pressure, p. We present here experimental information about the specific heat capacity, the thermal expansion coefficient, the lattice structure, and the thermal conductivity, and we also show results obtained by NMR and Raman spectroscopy. All data presented agree with the accepted model that the individual molecules in this phase are covalently bound to form linear molecular chains. In particular, the NMR data show clearly the presence of covalent bonds, and the Raman data exhibit several new lines at very low energies connected with chain vibrations. Thermal conductivity data obtained during polymerization show both the time dependence of the process and that polymerization occurs at lower p and T than observed previously for this phase.
  •  
3.
  •  
4.
  • Abou-Hamad, Edy, et al. (författare)
  • Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance
  • 2011
  • Ingår i: New Journal of Physics. - : IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. - 1367-2630. ; 13, s. 053045 (1)-(9)
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the electronic properties of Cs-intercalated singlewalled carbon nanotubes (SWNTs). A detailed analysis of the 13C and133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The ‘metallization’ of CsxC materials where x =0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF)at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x = 0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x <0.05 (α-phase), whereas it reaches a plateau in the range 0.05 < x < 0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2)orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.
  •  
5.
  • Abou-Hamad, Edy, et al. (författare)
  • Hydrogenation of C-60 in Peapods: Physical Chemistry in Nano Vessels
  • 2009
  • Ingår i: The Journal of Physical Chemistry C. - WASHINGTON, DC 20036 : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 113:20, s. 8583-8587
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogenation of C-60 molecules inside SWNT was achieved by direct reaction with hydrogen gas at elevated pressure and temperature. Evidence for the C-60 hydrogenation in peapods is provided by isotopic engineering with specific enrichment of encapsulated species and high resolution C-13 and H-1 NMR spectroscopy with the observation of characteristic diamagnetic and paramagnetic shifts of the NMR lines and the appearance of sp(3) carbon resonances. We estimate that approximately 78% of the C-60 molecules inside SWNTs are hydrogenated to an average degree of 14 hydrogen atoms per C-60 molecule. As a consequence, the rotational dynamics of the encapsulated C60Hx molecules is clearly hindered. Our successful hydrogenation experiments open completely new roads to understand and control confined chemical reactions at the nano scale
  •  
6.
  • Abou-Hamad, Edy, et al. (författare)
  • Molecular dynamics and phase transition in one-dimensional crystal of C60 encapsulated inside single wall carbon nanotubes
  • 2009
  • Ingår i: ACS Nano. - Washington, DC 20036 USA : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 3:12, s. 3878-3883
  • Tidskriftsartikel (refereegranskat)abstract
    • One-dimensional crystals of 25% 13C-enriched C60 encapsulated inside highly magnetically purified SWNTs were investigated by following the temperature dependence of the 13C NMR line shapes and the relaxation rates from 300 K down to 5 K. High-resolution MAS techniques reveal that 32% of the encapsulated molecules, so-called the C60α, are blocked at room temperature and 68%, labeled C60β, are shown to reversly undergo molecular reorientational dynamics. Contrary to previous NMR studies, spin−lattice relaxation time reveals a phase transition at 100 K associated with the changes in the nature of the C60β dynamics. Above the transition, the C60β exhibits continuous rotational diffusion; below the transition, C60β executes uniaxial hindered rotations most likely along the nanotubes axis and freeze out below 25 K. The associated activation energies of these two dynamical regimes are measured to be 6 times lower than in fcc-C60, suggesting a quiet smooth orientational dependence of the interaction between C60β molecules and the inner surface of the nanotubes.
  •  
7.
  • Abou-Hamad, E., et al. (författare)
  • NMR strategies to study the local magnetic properties of carbon nanotubes
  • 2012
  • Ingår i: Physica. B, Condensed matter. - Amsterdam : Elsevier. - 0921-4526 .- 1873-2135. ; 407:4, s. 740-742
  • Tidskriftsartikel (refereegranskat)abstract
    • The local magnetic properties of the one dimensional inner space of the nanotubes are investigated using C-13 nuclear magnetic resonance spectroscopy of encapsulated fullerene molecules inside single walled carbon nanotubes. Isotope engineering and magnetically purified nanotubes have been advantageously used on our study to discriminate between the different diamagnetic and paramagnetic shifts of the resonances. Ring currents originating from the pi electrons circulating on the nanotube, are found to actively screen the applied magnetic field by -36.9 ppm. Defects and holes in the nanotube walls cancel this screening locally. What is interesting, that at high magnetic fields, the modifications of the NMR resonances of the molecules from free to encapsulated can be exploited to determine some structural characteristics of the surrounding nanotubes, never observed experimentally. (C) 2011 Elsevier B.V. All rights reserved.
  •  
8.
  • Abou-Hamad, E., et al. (författare)
  • Structural properties of carbon nanotubes derived from (13)C NMR
  • 2011
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - College Park, Md. : American Physical Society. - 1098-0121 .- 1550-235X. ; 84:16, s. 165417-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single-and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position d. We show that the isotropic line follows the relation d = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position d is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.
  •  
9.
  •  
10.
  •  
11.
  • Annamalai, Alagappan, et al. (författare)
  • Influence of Sb5+ as a Double Donor on Hematite (Fe3+) Photoanodes for Surface-Enhanced Photoelectrochemical Water Oxidation
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:19, s. 16467-16473
  • Tidskriftsartikel (refereegranskat)abstract
    • To exploit the full potential of hematite (α-Fe2O3) as an efficient photoanode for water oxidation, the redox processes occurring at the Fe2O3/electrolyte interface need to be studied in greater detail. Ex situ doping is an excellent technique to introduce dopants onto the photoanode surface and to modify the photoanode/electrolyte interface. In this context, we selected antimony (Sb5+) as the ex situ dopant because it is an effective electron donor and reduces recombination effects and concurrently utilize the possibility to tuning the surface charge and wettability. In the presence of Sb5+ states in Sb-doped Fe2O3 photoanodes, as confirmed by X-ray photoelectron spectroscopy, we observed a 10-fold increase in carrier concentration (1.1 × 1020 vs 1.3 × 1019 cm–3) and decreased photoanode/electrolyte charge transfer resistance (∼990 vs ∼3700 Ω). Furthermore, a broad range of surface characterization techniques such as Fourier-transform infrared spectroscopy, ζ-potential, and contact angle measurements reveal that changes in the surface hydroxyl groups following the ex situ doping also have an effect on the water splitting capability. Theoretical calculations suggest that Sb5+ can activate multiple Fe3+ ions simultaneously, in addition to increasing the surface charge and enhancing the electron/hole transport properties. To a greater extent, the Sb5+- surface-doped determines the interfacial properties of electrochemical charge transfer, leading to an efficient water oxidation mechanism.
  •  
12.
  • Artemenko, A., et al. (författare)
  • Reference XPS spectra of amino acids
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In this report we present XPS data for five amino acids (AAs) (tryptophan, methionine, glutamine, glutamic acid, and arginine) with different side chain groups measured in solid state (powder form). The theoretically and experimentally obtained chemical structure of AAs are compared. Here, we analyse and discuss C 1 s, N 1 s, O 1s and S 2p core level binding energies, FWHMs, atomic concentrations of the functional groups in AAs. The experimentally obtained and theoretically calculated ratio of atomic concentrations are compared. The zwitterionic nature of methionine and glutamine in solid state was determined from protonated amino groups in N 1s peak and deprotonated carboxylic groups in the C 1s spectrum. The obtained XPS results for AAs well correspond with previously reported data.
  •  
13.
  • Auroux, Etienne, et al. (författare)
  • Evidence and Effects of Ion Transfer at Active-Material/Electrode Interfaces in Solution-Fabricated Light-Emitting Electrochemical Cells
  • 2021
  • Ingår i: Advanced Electronic Materials. - : Wiley-Blackwell Publishing Inc.. - 2199-160X. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-emitting electrochemical cell (LEC) allows for energy- and cost-efficient printing and coating fabrication of its entire device structure, including both electrodes and the single-layer active material. This attractive fabrication opportunity is enabled by the electrochemical action of mobile ions in the active material. However, a related and up to now overlooked issue is that such solution-fabricated LECs commonly comprise electrode/active-material interfaces that are open for transfer of the mobile ions, and it is herein demonstrated that a majority of the mobile anions in a common spray-coated active material can transfer into a spray-coated poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) positive electrode during LEC operation. Since it is well established that the mobile ion concentration in the active material has a profound influence on the LEC performance, this significant ion transfer is an important factor that should be considered in the design of low-cost LEC devices that deliver high performance.
  •  
14.
  • Auroux, Etienne, et al. (författare)
  • Solution -based fabrication of the top electrode in light -emitting electrochemical cells
  • 2020
  • Ingår i: Organic electronics. - : Elsevier. - 1566-1199 .- 1878-5530. ; 84
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-emitting electrochemical cell (LEC) has demonstrated capacity for cost- and material-efficient solution-based fabrication of the active material under ambient air. In this context, it is notable that corresponding reports on a scalable solution-based fabrication of the electrodes, particularly the top electrode, are rare. We address this issue through the demonstration of a transparent LEC, which is fabricated under ambient air by sequential spray deposition of a hydrophobic conjugated-polymer:ionic-liquid blend ink as the active material and a hydrophilic poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ink as the transparent top electrode. Such an optimized LEC delivers a luminance of 360 cd/m2 at a power efficacy of 1.6 lm/W, which is on par with the performance of a corresponding LEC device equipped with a vacuum-deposited and reflective metal top electrode. This implies that the entire LEC device indeed can be fabricated with solution-based processes and deliver a good performance, which is critical if the LEC technology is going to fulfil its low-cost potential.
  •  
15.
  • Barzegar, Hamid Reza, 1977-, et al. (författare)
  • C60/Collapsed Carbon Nanotube Hybrids : A Variant of Peapods
  • 2015
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 15:2, s. 829-834
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.
  •  
16.
  • Barzegar, Hamid Reza, et al. (författare)
  • Electrostatically Driven Nanoballoon Actuator
  • 2016
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 16:11, s. 6787-6791
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.
  •  
17.
  • Barzegar, Hamid Reza, et al. (författare)
  • Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes : Impact on Electronic Properties and Growth Selectivity
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:48, s. 25805-25816
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen doping in carbon nanostructures has attracted interest for more than a decade, and recent implementation of such structures in energy conversion systems has boosted the interest even more. Despite numerous studies, the structural conformation and stability of nitrogen functionalities in small diameter single-walled carbon nanotubes (SWNTs), and the impact of these functionalities on the electronic and mechanical properties of the SWNTs, are incomplete. Here we report a detailed study on nitrogen doping in SWNTs with diameters in the range of 0.8?1.0 nm, with well-defined chirality. We show that the introduction of nitrogen in the carbon framework significantly alters the stability of certain tubes, opening for the possibility to selectively grow nitrogen-doped SWNTs with certain chirality and diameter. At low nitrogen concentration, pyridinic functionalities are readily incorporated and the tubular structure is well pertained. At higher concentrations, pyrrolic functionalities are formed, which leads to significant structural deformation of the nanotubes and hence a stop in growth of crystalline SWNTs. Raman spectroscopy is an important tool to understand guest atom doping and electronic charge transfer in SWNTs. By correlating the influence of defined nitrogen functionalities on the electronic properties of SWNTs with different chirality, we make precise interpretation of experimental Raman data. We show that the previous interpretation of the double-resonance G?-peak in many aspects is wrong and instead can be well-correlated to the type of nitrogen doping of SWNTs originating from the p- or n-doping nature of the nitrogen incorporation. Our results are supported by experimental and theoretical data.
  •  
18.
  • Barzegar, Hamid Reza, et al. (författare)
  • Palladium nanocrystals supported on photo-transformed C-60 nanorods : effect of crystal morphology and electron mobility on the electrocatalytic activity towards ethanol oxidation
  • 2014
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 73, s. 34-40
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the synthesis and decoration of high-aspect-ratio crystalline C-60 nanorods (NRs) by functionalized palladium nanoparticles with an average size of 4.78 +/- 0.66 nm. In their pristine form, C-60 NRs suffer from partial damage in the solution-based decoration process resulting in poor crystallinity. However, by modifying the NR surface via in situ photochemical transformation in the liquid state, we are able to prepare highly stable NRs that retain their crystalline structure during the decoration process. Our method thus opens up for the synthesis of highly crystalline nanocomposite hybrids comprising Pd nanoparticles and C-60 NRs. Bys measuring the electron mobility of different C-60 NRs, we relate both the effect of electron mobility and crystallinity to the final electrocatalytic performance of the synthesized hybrid structures. We show that the photo-transformed C-60 NRs exhibit highly advantageous properties for ethanol oxidation based on both a better crystallinity and a higher bulk conductivity. These findings give important information in the search for efficient catalyst support.
  •  
19.
  • Barzegar, Hamid Reza, et al. (författare)
  • Self-assembled PCBM nanosheets : a facile route to electronic layer-on-Layer heterostructures
  • 2018
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 18:2, s. 1442-1447
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the self-assembly of semicrystalline [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanosheets at the interface between a hydrophobic solvent and water, and utilize this opportunity for the realization of electronically active organic/organic molecular heterostructures. The self-assembled PCBM nanosheets can feature a lateral size of >1 cm2 and be transferred from the water surface to both hydrophobic and hydrophilic surfaces using facile transfer techniques. We employ a transferred single PCBM nanosheet as the active material in a field-effect transistor (FET) and verify semiconductor function by a measured electron mobility of 1.2 × 10–2 cm2 V–1 s–1 and an on–off ratio of ∼1 × 104. We further fabricate a planar organic/organic heterostructure with the p-type organic semiconductor poly(3-hexylthiophene-2,5-diyl) as the bottom layer and the n-type PCBM nanosheet as the top layer and demonstrate ambipolar FET operation with an electron mobility of 8.7 × 10–4 cm2 V–1 s–1 and a hole mobility of 3.1 × 10–4 cm2V–1 s–1.
  •  
20.
  • Barzegar, Hamid R., et al. (författare)
  • Simple Dip-Coating Process for the Synthesis of Small Diameter Single-Walled Carbon Nanotubes-Effect of Catalyst Composition and Catalyst Particle Size on Chirality and Diameter
  • 2012
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 116:22, s. 12232-12239
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a dip-coating method to prepare catalyst particles (mixture of iron and cobalt) with a controlled diameter distribution on silicon wafer substrates by changing the solution's concentration and withdrawal velocity. The size and distribution of the prepared catalyst particles were analyzed by atomic force microscopy. Carbon nanotubes were grown by chemical vapor deposition on the substrates with the prepared catalyst particles. By decreasing the catalyst particle size to below 10 nm, the growth of carbon nanotubes can be tuned from few-walled carbon nanotubes, with homogeneous diameter, to highly pure single-walled carbon nanotubes. Analysis of the Raman radial breathing modes, using three different Raman excitation wavelengths (488, 633, and 785 nm), showed a relatively broad diameter distribution (0.8-1.4 nm) of single-walled carbon nanotubes with different chiralities. However, by changing the composition of the catalyst particles while maintaining the growth parameters, the chiralities of single-walled carbon nanotubes were reduced to mainly four different types, (12, 1), (12, 0), (8, 5), and (7, 5), accounting for about 70% of all nanotubes.
  •  
21.
  • Barzegar, Hamid Reza, et al. (författare)
  • Solution-Based Phototransformation of C-60 Nanorods : Towards Improved Electronic Devices
  • 2013
  • Ingår i: Particle & particle systems characterization. - : Wiley-VCH Verlagsgesellschaft. - 0934-0866 .- 1521-4117. ; 30:8, s. 715-720
  • Tidskriftsartikel (refereegranskat)abstract
    • A modified liquid-liquid interface precipitation synthesis of C-60 nanorods, effects and opportunities following an in situ photochemical transformation in the liquid state, and an electronic characterization using a field-effect transistor (FET) geometry are reported. The nanorods feature a high aspect ratio of approximate to 10(3) and a notably small average diameter of 172 nm. Interestingly, it is found that a decreased nanorod diameter appears to correlate with distinctly improved electronic properties, and an average electron mobility of 0.30 cm(2) V-1 s(-1), as measured in a FET geometry, is reported for as-grown nanorods, with the peak value being an impressive 1.0 cm(2) V-1 s(-1). A photoexposure using green laser light ( = 532 nm) is demonstrated to result in the formation of a polymer-C-60 shell encapsulating a monomer-C-60 bulk; such photo-transformed nanorods exhibit an electron mobility of 4.7 x 10(-3) cm(2) V-1 s(-1). It is notable that the utilized FET geometry only probes the polymer-C-60 nanorod surface shell, and that the monomer-C-60 bulk is anticipated to exhibit a higher mobility. Importantly, photoexposed nanorods can be conveniently processed as a stabile dispersion in common hydrophobic solvents, and this finding is attributed to the insoluble character of the polymer-C-60 shell.
  •  
22.
  • Barzegar, Hamid Reza, et al. (författare)
  • Spontaneous twisting of a collapsed carbon nanotube
  • 2017
  • Ingår i: Nano Reseach. - : Tsinghua University Press. - 1998-0124 .- 1998-0000. ; 10:6, s. 1942-1949
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in situ transmission electron microscopy (TEM). A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-walled tube. The few-walled, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In situ diffraction experiments fully characterize the uncollapsed and collapsed tubes. The experimental observations and associated theoretical analysis indicate that the origin of the twisting is compressive strain.
  •  
23.
  • Barzegar, Hamid Reza, et al. (författare)
  • Water assisted growth of C60 rods and tubes by liquid-liquid interfacial precipitation method
  • 2012
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 17:6, s. 6840-6853
  • Tidskriftsartikel (refereegranskat)abstract
    • C60 nanorods with hexagonal cross sections are grown using a static liquid-liquid interfacial precipitation method in a system of C60/m-dichlorobenzene solution and ethanol. Adding water to the ethanol phase leads instead to C60 tubes where both length and diameter of the C60 tubes can be controlled by the water content in the ethanol. Based on our observations we find that the diameter of the rods/tubes strongly depends on the nucleation step. We propose a liquid-liquid interface growth model of C60 rods and tubes based on the diffusion rate of the good C60 containing solvent into the poor solvent as well as on the size of the crystal seeds formed at the interface between the two solvents. The grown rods and tubes exhibit a hexagonal solvate crystal structure with m-dichlorobenzene solvent molecules incorporated into the crystal structure, independent of the water content. An annealing step at 200 °C at a pressure <1 kPa transforms the grown structures into a solvent-free face centered cubic structure. Both the hexagonal and the face centered cubic structures are very stable and neither morphology nor structure shows any signs of degradation after three months of storage.
  •  
24.
  • Barzegar, HamidReza, 1977- (författare)
  • Synthesis and Characterization of Carbon Based One-Dimensional Structures : Tuning Physical and Chemical Properties
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon nanostructures have been extensively used in different applications; ranging from electronic and optoelectronic devices to energy conversion. The interest stems from the fact that covalently bonded carbon atoms can form a wide variety of structures with zero-, one- and two-dimensional configuration with different physical properties. For instance, while fullerene molecules (zero-dimensional carbon structures) realize semiconductor behavior, two-dimensional graphene shows metallic behavior with exceptional electron mobility. Moreover the possibility to even further tune these fascinating properties by means of doping, chemical modification and combining carbon based sub-classes into new hybrid structures make the carbon nanostructure even more interesting for practical application. This thesis focuses on synthesizing SWCNT and different C60 one-dimensional structures as well as tuning their properties by means of different chemical and structural modification. The purpose of the study is to have better understanding of the synthesis and modification techniques, which opens for better control over the properties of the product for desired applications.In this thesis carbon nanotubes (CNTs) are grown by chemical vapor deposition (CVD) on iron/cobalt catalyst particles. The effect of catalyst particle size on the diameter of the grown CNTs is systematically studied and in the case of SWCNTs it is shown that the chirality distribution of the grown SWCNTs can be tuned by altering the catalyst particle composition. In further experiments, incorporation of the nitrogen atoms in SWCNTs structures is examined. A correlation between experimental characterization techniques and theoretical calculation enable for precise analysis of different types of nitrogen configuration in SWCNTs structure and in particular their effect on growth termination and electronic properties of SWCNTs are studied.C60 one-dimensional structures are grown through a solution based method known as Liquid-liquid interfacial precipitation (LLIP). By controlling the crystal seed formation at the early stage of the growth the morphology and size of the grown C60 one-dimensional structures where tuned from nanorods to large diameter rods and tubes. We further introduce a facile solution-based method to photo-polymerize the as-grown C60 nanorods, and show that such a method crates a polymeric C60 shell around the nanorods. The polymeric C60 shell exhibits high stability against common hydrophobic C60 solvents, which makes the photo-polymerized nanorods ideal for further solution-based processing. This is practically shown by decoration of both as grown and photo-polymerized nanorods by palladium nanoparticles and comparison between their electrochemical activities. The electrical properties of the C60 nanorods are also examined by utilizing a field effect transistor geometry comprising different C60 nanorods.In the last part of the study a variant of CNT is synthesized in which large diameter, few-walled CNTs spontaneously transform to a collapsed ribbon shape structure, the so called collapsed carbon nanotube (CCNT). By inserting C60 molecules into the duct edges of CCNT a new hybrid structure comprising C60 molecules and CCNT is synthesized and characterized. A further C60 insertion lead to reinflation of CCNTs, which eventually form few-walled CNT completely filled with C60 molecules.
  •  
25.
  • Benselfelt, Tobias, et al. (författare)
  • Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 35:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The unique properties of hydrogels enable the design of life-like soft intelligent systems. However, stimuli-responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in-plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape-morphing at only −1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of ≈700 water molecules per electron–ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of ≈150 kJ m−3 (2 MJ m−3 vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems.
  •  
26.
  • Bi, Zenghui, et al. (författare)
  • Highly dispersed La−O/N−C sites anchored in hierarchically porous nitrogen-doped carbon as bifunctional catalysts for high-performance rechargeable Zn−air batteries
  • 2023
  • Ingår i: Energy Storage Materials. - : Elsevier. - 2405-8289 .- 2405-8297. ; 54, s. 313-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Inexpensive, high-activity bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are imperative for the development of energy storage and conversion systems. A nitrogen-doped carbon material with a micro−meso−macroporous structure doped with La (LaPNC) containing La−O/N−C active sites is prepared using SiO2 particle templating of carbon and a metal node exchange strategy. The coordination environment of La sites stabilized by two oxygen and four nitrogen atoms (LaO2N4), is further verified by X-ray absorption spectroscopy. The ORR half-wave potential reaches 0.852 V, and the OER overpotential reaches 263 mV at 10 mA cm−2. The Zn−air battery, with LaPNC as the air cathode, has a maximum power density of 202 mW cm−2 and achieves stable charge−discharge for at least 100 h without a significant increase or decrease in the charge or discharge voltages, respectively. Density functional theory calculations suggest that LaO2N4 sites exhibit the lowest activation free energy and the most easily desorbed oxygen capacity. This study provides new insights into the design of efficient, durable bifunctional catalysts as alternatives to precious-metal-based catalysts.
  •  
27.
  • Bi, Zenghui, et al. (författare)
  • Three dimensional star-like mesoporous nitrogen-doped carbon anchored with highly dispersed Fe and Ce dual-sites for efficient oxygen reduction reaction in Zn-air battery
  • 2022
  • Ingår i: Colloid and Interface Science Communications. - : Elsevier. - 2215-0382. ; 49
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal‑nitrogen‑carbon materials (M-N-C) have attracted much attention due to their low cost, high abundance, and efficient catalytic performance. Nevertheless, Fe-N-C materials are considered the most promising oxygen reduction reaction (ORR) catalysts for replacing noble metals. Ce is chemically active and has many metal valence states, and empty orbitals that can participate in coordination. On this basis, Fe, Ce-codoped catalyst was constructed in this study. The synergistic effect of the dual metal centers was verified, and a Fe, Ce-codoped nitrogen-doped carbon (FeCeNC) with six equal branch angles was proposed. The half-wave potential for the ORR catalyzed by FeCeNC is 0.855 V. As a rechargeable Zn-air battery cathode catalyst, FeCeNC exhibits excellent electrochemical performances, with an open-circuit voltage of 1.427 V, a maximum power density of 169.2 mW cm−2 and a stable cycling time of 80 h, demonstrating an excellent cycle performance.
  •  
28.
  • Blazinic, Vanja (författare)
  • Probing the effects of photodegradation of acceptor materials in polymer solar cells: bulk, surface, and molecular level
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Polymer solar cells (PSC) have reached record power conversion efficiencies of over 15%. The operational lifetime of PSCs, however, has to increase for their use in large area outdoor applications. In this work, a set of spectroscopic techniques (UV-vis, FTIR, NEXAFS, XPS) was used to study the impact of exposure to light and air (photo-oxidation) on the photoactive layer and its components. We focused on the electron acceptor components: the fullerene derivatives, PC60BM and PC70BM, and the polymer N2200. A comparative study of photo-oxidized PC60BM and PC70BM thin films by UV-vis and FTIR spectroscopy has shown that both materials undergo similar photochemical transformation, with the process being faster in PC60BM, due to the greater curvature of the C60 cage. Comparing experimental FTIR, XPS and NEXAFS spectra of the photo-oxidized PC60BM thin films with the calculated spectra for a large variety of photo-oxidation products, it was found that dicarbonyl and anhydride groups attach to the C60 cage during photo-oxidation. The study of photo-oxidized TQ1:PC70BM blend films by spectroscopic and J-V measurements shows that deterioration of the charge transport in PC70BM is the major contributor to the device performance degradation. Kelvin Probe measurements demonstrated that the charge transport deterioration was due to upward band bending and gap states being formed on the surface of photo-oxidized PC70BM. The TQ1:PC70BM blends films were further studied by AFM-IR in order to determine the lateral distribution of pristine components, as well as the photo-oxidation products. It was found that anhydride oxidation products of PC70BM are equally distributed over the blend film surface. The PC70BM is replaced with the polymer N2200 in the blend with TQ1. The photostability in air of the blend and its neat components was studied by UV-vis and FTIR spectroscopy. The spectra show that thermal annealing improves the photostability in air of both components.
  •  
29.
  • Bouhrara, M., et al. (författare)
  • Electromagnetic Properties of Inner Double Walled Carbon Nanotubes Investigated by Nuclear Magnetic Resonance
  • 2013
  • Ingår i: Journal of Nanomaterials. - : Hindawi Publishing Corporation. - 1687-4110 .- 1687-4129. ; 2013, s. 713475-
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% (13) C enriched C-60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.
  •  
30.
  • Bouhrara, M., et al. (författare)
  • High-resolution (13)C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes
  • 2011
  • Ingår i: Journal of Applied Physics. - Woodbury, N.Y. : American Institute of Physics. - 0021-8979 .- 1089-7550. ; 110:5, s. 054306-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.
  •  
31.
  • Boulanger, Nicolas, et al. (författare)
  • Aramid based slot liners for low voltage electric motor applications
  • 2024
  • Ingår i: 2024 IEEE Electrical Insulation Conference (EIC). - : IEEE. - 9798350360431 - 9798350360448 ; , s. 17-21
  • Konferensbidrag (refereegranskat)abstract
    • The insulation in the stator of a low voltage electric motor has a double purpose: ensuring the electric insulation around the stator wiring as well as permitting a good evacuation of the generated heat. Improving the heat transfer properties of the slot liner within the stator while maintaining its electrical insulation properties allows for more efficient electric motors. This paper presents different types of composites based on an aramid matrix with boron nitride, zinc oxide and aluminum oxide fillers. The effect of the different filler materials on the thermal conductivity and the electric insulation properties of the slot liner are presented. Perspectives on the needs for a life cycle assessment of the slot liner constituents are evoked.
  •  
32.
  • Buga, Sergei G., et al. (författare)
  • Synthesis of superhard 3D-polymeric C60 fullerites from rhombohedral 2D-polymer by high-pressure-high-temperature treatment.
  • 2003
  • Ingår i: High Pressure Research vol. 23, issue 3. - London : Taylor & Francis. ; , s. 259-264
  • Konferensbidrag (refereegranskat)abstract
    • Rhombohedral C60 polymer was subjected to high-pressure-high-temperature treatment at P =13 GPa, T =620-1620 K. After quenching, crystalline and disordered structures with densities in the range of 2.1-2.9 g cm-1 were obtained. The structures of the samples have been investigated by powder X-ray diffraction and Raman scattering. DSC analysis showed a transformation of the polymeric structure into monomeric on annealing in the range 400-640 K. The temperature dependence of the electrical resistance of samples with disordered structure was measured in the range 2.5-300K. For different samples, the conductivity was proportional to T1/2, T3/2, T4 and exp(-1/T1/4).
  •  
33.
  • Ding, Pengjia, et al. (författare)
  • NiCo2O4 hollow microsphere–mediated ultrafast peroxymonosulfate activation for dye degradation
  • 2021
  • Ingår i: Chinese Chemical Letters. - : Elsevier. - 1001-8417 .- 1878-5964. ; 32:8, s. 2495-2498
  • Tidskriftsartikel (refereegranskat)abstract
    • Morphology and dispersity are key factors for activating peroxymonosulfate (PMS). In this study, we designed a recyclable open-type NiCo2O4 hollow microsphere via a simple hydrothermal method with the assistance of an NH3 vesicle. The physical structure and chemical properties were characterized using techniques such as scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), N2 adsorption and X-ray photoelectron spectroscopy (XPS). The test results confirm that the inner and outer surfaces of open-type NiCo2O4 hollow-sphere can be efficiently utilized because of the hole on the surface of the catalyst, which can minimize the diffusion resistance of the reactants and products. Under optimized conditions, the total organic carbon (TOC) removal efficiency of rhodamine B (RhB) can reach up to 80% in 40 min, which is almost 50% shorter than the reported values. The reactive radicals were identified and the proposed reaction mechanism was well described. Moreover, the disturbances of HCO3−, NO3−, Cl− and H2PO4− were further investigated. As a result, HCO3− and NO3− suppressed the reaction while Cl− and H2PO4− had a double effect on reaction.
  •  
34.
  •  
35.
  • Dzwilewski, Andrzej, et al. (författare)
  • C60 Field-Effect Transistors: Effects of Polymerization on electronic Properties and Device Performance.
  • 2007
  • Ingår i: Physical Review B. ; 75:7, s. 075203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated thin-film field-effect transistors (TFTs) with C60 as the active material, and we report the effects of photo-induced polymerization of the C60 film. We find that the effects of a complete polymerization for a typical top-contact C60 TFT is as follows: the electron mobility (μn) at room temperature drops slightly from 0.074 to 0.068 cm2/Vs, the activation energy of μn decreases from 0.10 meV to 0.09 meV, and the threshold voltage for TFT operation decreases markedly by ~15 %. The latter observation suggests that the effective number of electron traps in the C60 film decreases following polymerization. Considering that the polymerization was achieved with a low-energy HeNe laser, it is conceivable that the polymerization approach could be of interest for applications, e.g., organic bulk-heterojunction solar cells, where a stabilized C60 morphology attained with benign means is desired
  •  
36.
  •  
37.
  • Dzwilewski, Andrzej, 1979-, et al. (författare)
  • Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics
  • 2009
  • Ingår i: Journal of the American Chemical Society. - Washington, DC, USA : American Chemical Society. - 0002-7863 .- 1520-5126. ; 131:11, s. 4006-4011
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a novel and potentially generic method for the efficient patterning of films of organic semiconductors and demonstrate the merit of the method on the high-solubility fullerene [6,6]-phenyl C61- butyric acid methyl ester (PCBM). The patterning technique is notably straightforward as it requires no photoresist material and encompasses only two steps: (i) exposure of select film areas to visible laser light during which the PCBM mononer is photochemically converted into a dimeric state, and (ii) development via solvent washing after which the nonexposed portions of the PCBM film are selectively removed. Importantly, the method is highly benign in that it leaves the electronic properties of the remaining patterned material intact, which is directly evidenced by the fact that we fabricate fully functional arrays of micrometersized field-effect transistors with patterned PCBM as the active material.
  •  
38.
  •  
39.
  • Ekeroth, Sebastian, 1988-, et al. (författare)
  • Catalytic nanotruss structures realized by magnetic self-assembly in pulsed plasma
  • 2018
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 18:5, s. 3132-3137
  • Tidskriftsartikel (refereegranskat)abstract
    • Tunable nanostructures that feature a high surface area are firmly attached to a conducting substrate and can be fabricated efficiently over significant areas, which are of interest for a wide variety of applications in, for instance, energy storage and catalysis. We present a novel approach to fabricate Fe nanoparticles using a pulsed-plasma process and their subsequent guidance and self-organization into well-defined nanostructures on a substrate of choice by the use of an external magnetic field. A systematic analysis and study of the growth procedure demonstrate that nondesired nanoparticle agglomeration in the plasma phase is hindered by electrostatic repulsion, that a polydisperse nanoparticle distribution is a consequence of the magnetic collection, and that the formation of highly networked nanotruss structures is a direct result of the polydisperse nanoparticle distribution. The nanoparticles in the nanotruss are strongly connected, and their outer surfaces are covered with a 2 nm layer of iron oxide. A 10 μm thick nanotruss structure was grown on a lightweight, flexible and conducting carbon-paper substrate, which enabled the efficient production of H2 gas from water splitting at a low overpotential of 210 mV and at a current density of 10 mA/cm2.
  •  
40.
  • Ekeroth, Sebastian, et al. (författare)
  • Magnetically Collected Platinum/Nickel Alloy Nanoparticles as Catalysts for Hydrogen Evolution
  • 2021
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:12, s. 12957-12965
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen evolution reaction (HER) is a key process in electrochemical water splitting. To lower the cost and environmental impact of this process, it is highly motivated to develop electrocatalysts with low or no content of noble metals. Here, we report on an ingenious synthesis of hybrid PtxNi1-x electrocatalysts in the form of a nanoparticle-nanonetwork structure with very low noble metal content. The structure possesses important features such as good electrical conductivity, high surface area, strong interlinking, and substrate adhesion, which render an excellent HER activity. Specifically, the best performing Pt0.05Ni0.95 sample demonstrates a Tafel slope of 30 mV dec-1 in 0.5 M H2SO4 and an overpotential of 20 mV at a current density of 10 mA cm-2 with high stability. The impressive catalytic performance is further rationalized in a theoretical study, which provides insight into the mechanism on how such small platinum content can allow for close-to-optimal adsorption energies for hydrogen.
  •  
41.
  • Ekspong, Joakim, 1987- (författare)
  • Electrocatalysts for sustainable hydrogen energy : disordered and heterogeneous nanomaterials
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the current global greenhouse gas emissions, our remaining carbon budget is depleted in only 7 years. After that, several biophysical systems are predicted to collapse such as the arctic ice, coral reefs and the permafrost, leading to potentially irreversible consequences. Our emissions are strongly correlated to access of energy and even if we are aware of the planetary emergency today, our emissions still continue to grow. Electrical vehicles have the possibility to reduce the emissions in the transportation sector significantly. However, these vehicles are still expensive and impractical for long-distance or heavy transportation. While political actions and technological development are essential to keep prices down, the driving dis- tance can be increased by replacing the batteries for onboard electricity production. In hydrogen fuel cells, electricity is produced by combining hydrogen gas (H2) and oxygen with only water as the by-product and if employed in electrical vehicles, distances of 500 km are enabled with a refueling time in 5 minutes. For other uses than in vehicles, H2 is also promising for large-scale electricity storage and for several industrial processes such as manufacturing CO2-free steel, ammonia and synthetic fuels. However, today most H2 production methods relies on fossil fuels and releases huge amounts of CO2. Electrolysis of water is an alternative production method where H2, along with oxygen are produced from water. To split the water, electricity has to be added and if renewable energy sources are used, the method has zero emissions and is considered most promising for a sustainable hydrogen energy economy. The tech- nique is relatively expensive compared to the fossil fuel-based methods and relies on rare noble metals such as platinum as catalysts for decreasing the required energy to split water. For large scale productions, these metals need to be replaced by more sustainable and abundant catalysts to lower the cost and minimize the environmental impacts. In this thesis we have investigated such candidates for the water splitting reaction but also to some extent for the oxygen reduction reaction in fuel cells. By combining theory and experiments we hope to aid in the development and facilitate a transition to clean hydrogen energy. We find among other things that i) defects in catalytic materials plays a significant role the performance and efficiency, and that ii) heterogeneity influence the adsorption energies of reaction intermediates and hence the catalytic efficiency and iii) while defects are not often studied for electrocatalytic reactions, these may inspire for novel materials in the future. 
  •  
42.
  • Ekspong, Joakim, et al. (författare)
  • Hydrogen Evolution Reaction Activity of Heterogeneous Materials : A Theoretical Model
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:38, s. 20911-20921
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we present a new comprehensive methodology to quantify the catalytic activity of heterogeneous materials for the hydrogen evolution reaction (HER) using ab initio simulations. The model is composed of two parts. First, the equilibrium hydrogen coverage is obtained by an iterative evaluation of the hydrogen adsorption free energies (ΔGH) using density functional theory calculations. Afterward, the ΔGH are used in a microkinetic model to provide detailed characterizations of the entire HER considering all three elementary steps, i.e., the discharge, atom + ion, and combination reactions, without any prior assumptions of rate-determining steps. The microkinetic model takes the equilibrium and potential-dependent characteristics into account, and thus both exchange current densities and Tafel slopes are evaluated. The model is tested on several systems, from polycrystalline metals to heterogeneous molybdenum disulfide (MoS2), and by comparing to experimental data, we verify that our model accurately predicts their experimental exchange current densities and Tafel slopes. Finally, we present an extended volcano plot that correlates the electrical current densities of each elementary reaction step to the coverage-dependent ΔGH.
  •  
43.
  •  
44.
  • Ekspong, Joakim, et al. (författare)
  • Solar-driven water splitting at 13.8 % solar-to-hydrogen efficiency by an earth-abundant PV-electrolyzer
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 9:42, s. 14070-14078
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the synthesis and characterization of an efficient and low cost solar-driven electrolyzer consisting of Earth-abundant materials. The trimetallic NiFeMo electrocatalyst takes the shape of nanometer-sized flakes anchored to a fully carbon-based current collector comprising a nitrogen-doped carbon nanotube network, which in turn is grown on a carbon fiber paper support. This catalyst electrode contains solely Earth-abundant materials, and the carbon fiber support renders it effective despite a low metal content. Notably, a bifunctional catalyst–electrode pair exhibits a low total overpotential of 450 mV to drive a full water-splitting reaction at a current density of 10 mA cm–2 and a measured hydrogen Faradaic efficiency of ∼100%. We combine the catalyst–electrode pair with solution-processed perovskite solar cells to form a lightweight solar-driven water-splitting device with a high peak solar-to-fuel conversion efficiency of 13.8%.
  •  
45.
  • Ekspong, Joakim, et al. (författare)
  • Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogen-Doped Carbon Nanotubes for Hydrogen Evolution Reaction
  • 2016
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 26:37, s. 6766-6776
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding an abundant and cost-effective electrocatalyst for the hydrogen evolu-tion reaction (HER) is crucial for a global production of hydrogen from water electrolysis. This work reports an exceptionally large surface area hybrid catalyst electrode comprising semicrystalline molybdenum sulfi de (MoS 2+ x) catalystattached on a substrate based on nitrogen-doped carbon nanotubes (N-CNTs), which are directly grown on carbon fiber paper (CP). It is shown here that nitrogen-doping of the carbon nanotubes improves the anchoring of MoS 2+ xcatalyst compared to undoped carbon nanotubes and concurrently stabilizes a semicrystalline structure of MoS 2+ x with a high exposure of active sites for HER. The well-connected constituents of the hybrid catalyst are shown to facilitate electron transport and as a result of the good attributes, the MoS 2+ x/N-CNT/CPelectrode exhibits an onset potential of −135 mV for HER in 0.5 M H2SO4, a Tafel slope of 36 mV dec −1, and high stability at a current density of −10 mA cm −2.
  •  
46.
  • Ekspong, Joakim, et al. (författare)
  • Stable Sulfur‐Intercalated 1T′ MoS2 on Graphitic Nanoribbons as Hydrogen Evolution Electrocatalyst
  • 2018
  • Ingår i: Advanced Functional Materials. - : WILEY-VCH VERLAG GMBH. - 1616-301X .- 1616-3028. ; 28:46
  • Tidskriftsartikel (refereegranskat)abstract
    • The metastable 1T′ polymorph of molybdenum disulfide (MoS2) has shown excellent catalytic activity toward the hydrogen evolution reaction (HER) in water‐splitting applications. Its basal plane exhibits high catalytic activity comparable to the edges in 2H MoS2 and noble metal platinum. However, the production and application of this polymorph are limited by its lower energetic stability compared to the semiconducting 2H MoS2 phase. Here, the production of stable intercalated 1T′ MoS2 nanosheets attached on graphitic nanoribbons is reported. The intercalated 1T′ MoS2 exhibits a stoichiometric S:Mo ratio of 2.3 (±0.1):1 with an expanded interlayer distance of 10 Å caused by a sulfur‐rich intercalation agent and is stable at room temperature for several months even after drying. The composition, structure, and catalytic activity toward HER are investigated both experimentally and theoretically. It is concluded that the 1T′ MoS2 phase is stabilized by the intercalated agents, which further improves the basal planes′ catalytic activity toward HER.
  •  
47.
  • Ekspong, Joakim, et al. (författare)
  • Stainless Steel as A Bi-Functional Electrocatalyst – A Top-Down Approach
  • 2019
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 12:13
  • Tidskriftsartikel (refereegranskat)abstract
    • For a hydrogen economy to be viable, clean and economical hydrogen production methods are vital. Electrolysis of water is a promising hydrogen production technique with zero emissions, but suffer from relatively high production costs. In order to make electrolysis of water sustainable, abundant, and efficient materials has to replace expensive and scarce noble metals as electrocatalysts in the reaction cells. Herein, we study activated stainless steel as a bi-functional electrocatalyst for the full water splitting reaction by taking advantage of nickel and iron suppressed within the bulk. The final electrocatalyst consists of a stainless steel mesh with a modified surface of layered NiFe nanosheets. By using a top down approach, the nanosheets stay well anchored to the surface and maintain an excellent electrical connection to the bulk structure. At ambient temperature, the activated stainless steel electrodes produce 10 mA/cm(2) at a cell voltage of 1.78 V and display an onset for water splitting at 1.68 V in 1M KOH, which is close to benchmarking nanosized catalysts. Furthermore, we use a scalable activation method using no externally added electrocatalyst, which could be a practical and cheap alternative to traditionally catalyst-coated electrodes.
  •  
48.
  • Enevold, Jenny, 1981- (författare)
  • Structure and morphology control of organic semiconductors for functional optoelectronic applications
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The functionality and application of organic semiconductors are largely dependent on their constituent structure and morphology. This thesis presents a number of functional and novel approaches for the control and tuning of structural and morphological features of a variety of organic semiconductor materials, and also demonstrates that these approaches can be utilized for improved device operation of field-effect transistors, organic solar cells and light-emitting electrochemical cells.The fullerene family is a particular group of closed-cage organic semiconductors, which can be photochemically coupled into larger dimeric or polymeric structures through the excitation of the fullerene molecules by light emission. In Paper I, we perform a detailed experimental and analytical investigation, which demonstrates that this photochemical monomer-to-dimer transformation requires that both constituent fullerene molecules are photoexcited. The direct consequence is that the initial probability for the photochemical transformation is dependent on the square of the light-emission intensity.The photochemical coupling of fullerene molecules commonly results in a distinctly lowered solubility in common hydrophobic solvents, which can be utilized for the direct patterning of fullerene films by resist-free lithography. In Paper II, we utilize this patterning opportunity for the fabrication of one-dimensional fullerene nano-stripes using two-beam laser interference lithography. A desired high contrast between the patterned and non-patterned fullerene regions is facilitated by the non-linear response of the photochemical transformation process, as predicted by the findings in Paper I. The patterned fullerene nano-stripes were utilized as the active material in field-effect transistors, which featured high electron mobility and large on-off ratio.This patterning was in Paper III extended into easy tunable two-dimensional fullerene structures by the design and development of an exposure setup, essentially comprising a laser and a spatial light modulator featuring >8 millions of independently controlled mirrors. With this approach, we could fabricate well-defined fullerene microdots over a several square-millimeter sized area, which was utilized as an internal out-coupling layer in a light-emitting electrochemical cell with significantly enhanced light output.Paper IV reports on the development of a new “spray-sintering” method for the cost-efficient solution-based deposition of the active material in light-emitting electrochemical cells. This carefully designed approach effectively resolves the issue with phase separation between the hydrophobic organic semiconductor and the hydrophilic electrolyte that results in a sub-par LEC performance, and also allows for the direct fabrication of LEC devices onto complex surfaces, including a stainless-steel fork.Paper V finally reports on the design and synthesis of a soluble small molecule, featuring a donor-acceptor-donor configuration. It acts as the donor when combined with a soluble fullerene acceptor in the active material of organic solar cells, and such devices with optimized donor/acceptor nanomorphology feature a high open-circuit voltage of ~1.0 V during solar illumination.
  •  
49.
  • Eriksson, Axl, et al. (författare)
  • Synthesis of Well-Ordered Functionalized Silicon Microwires Using Displacement Talbot Lithography for Photocatalysis
  • 2024
  • Ingår i: ACS Omega. - 2470-1343. ; 9:18, s. 20623-20628
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-assisted chemical etching (MACE) is a cheap and scalable method that is commonly used to obtain silicon nano- or microwires but lacks spatial control. Herein, we present a synthesis method for producing vertical and highly periodic silicon microwires, using displacement Talbot lithography before wet etching with MACE. The functionalized periodic silicon microwires show 65% higher PEC performance and 2.3 mA/cm2 higher net photocurrent at 0 V compared to functionalized, randomly distributed microwires obtained by conventional MACE at the same potentials.
  •  
50.
  • Fan, Lizhou (författare)
  • Towards Artificial Photosynthesis: Exploration of Efficient First-Row Transition Metal-Based Water Oxidation Catalysts
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Artificial photosynthesis provides a promising strategy for sustainable energy harvesting, yet its overall efficiency is limited by the water oxidation reaction. The subject of this thesis focuses on the exploration of highly efficient cost-effective heterogeneous catalysts for water oxidation, and the investigation of essential catalyst structure-activity relationships.Chapters 1 and 2 present a brief introduction on heterogeneous catalysts for water oxidation, including selected state-of-the-art catalysts, methodologies for activity improvement, and mechanistic investigations. The characterization methods used in this thesis are also demonstrated.In chapter 3, a molecular functionalization approach is developed to rationally modify the electronic structure of NiO catalyst, by which the water oxidation activity is systematically tailored. These studies correspond to the question: “How to rationally adjust the catalytic performance of heterogeneous catalysts?”In chapter 4, to lower the catalyst cost, a Fe-based Fe0.65Cr0.35Ox nanocatalyst is fabricated by structural and electronic modulation, which shows considerable water oxidation activity. These studies target the question: “How to fabricate an efficient Fe-based water oxidation catalyst?”In chapter 5, a bio-inspired Mn-based catalyst is presented. The catalyst successfully imitates the key features of the natural oxygen evolving complex, achieving dramatically improved water oxidation activity. These studies correspond to the question: “How to improve the catalytic activity of Mn-based water oxidation catalysts?”Finally, in chapter 6, a 3D NiFeCr/Cu nanoarray electrode is constructed by structural engineering, which exhibits extremely high water oxidation activity. These studies correspond to the question: “How to fabricate an efficient catalytic electrode for water oxidation?”
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 278
Typ av publikation
tidskriftsartikel (211)
konferensbidrag (39)
doktorsavhandling (15)
annan publikation (9)
forskningsöversikt (2)
bokkapitel (2)
visa fler...
konstnärligt arbete (1)
visa färre...
Typ av innehåll
refereegranskat (245)
övrigt vetenskapligt/konstnärligt (33)
Författare/redaktör
Wågberg, Thomas (126)
Wågberg, Thomas, 197 ... (123)
Hu, Guangzhi (86)
Sundqvist, Bertil (53)
Gracia-Espino, Eduar ... (42)
Barzegar, Hamid Reza (28)
visa fler...
Sharifi, Tiva (22)
Yao, Mingguang (17)
Mamat, Xamxikamar (17)
Li, Yongtao (16)
Sandström, Robin (15)
Edman, Ludvig (15)
Nitze, Florian (14)
Liu, Bingbing (13)
Ekspong, Joakim (13)
Larsen, Christian (12)
Zhou, Shuxing (12)
Zhang, Lei (11)
Jia, Xueen (11)
Zhou, Yingtang (11)
Chen, Jianbing (11)
Edman, Ludvig, 1967- (10)
Zhao, Xue (10)
Annamalai, Alagappan (10)
Wang, Jia (10)
Messinger, Johannes (9)
Launois, Pascale (9)
Jacobsson, Per (8)
Zhang, Hua (8)
Shchukarev, Andrey (8)
Johnels, Dan (8)
Gao, Sanshuang (8)
Kim, Y. (7)
Zettl, Alex (7)
Tai, Cheuk-Wai (7)
Boulanger, Nicolas (7)
Wågberg, Thomas, Pro ... (7)
Abou-Hamad, Edy (6)
Goze-Bac, Christophe (6)
Soldatov, Alexander (6)
Schön, Thomas B. (6)
Miranda la Hera, Vla ... (6)
Zäll, Erik (6)
Nitze, Florian, 1981 ... (6)
Bi, Zenghui (6)
Wang, Xinzhong (6)
Li, Quanjun (6)
Cui, Tian (6)
Zou, Bo (6)
Kwong, Wai Ling (6)
visa färre...
Lärosäte
Umeå universitet (254)
Uppsala universitet (20)
Linköpings universitet (13)
Stockholms universitet (12)
Kungliga Tekniska Högskolan (9)
Luleå tekniska universitet (6)
visa fler...
Chalmers tekniska högskola (4)
RISE (4)
Lunds universitet (3)
Göteborgs universitet (2)
Karlstads universitet (2)
Sveriges Lantbruksuniversitet (2)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (277)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (235)
Teknik (72)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy