SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wagner Sigurd) "

Sökning: WFRF:(Wagner Sigurd)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abou-Ras, Daniel, et al. (författare)
  • Innovation highway : Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint
  • 2017
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 633, s. 2-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The present contribution is a summary of an event that was organized as a special evening session in Symposium V "Chalcogenide Thin-Film Solar Cells" at the E-MRS 2016 Spring Meeting, Lille, France. The presentations in this session were given by the coauthors of this paper. These authors present retrospectives of key developments in the field of Cu(In,Ga)(S,Se)(2) solar cells as they themselves had witnessed in their laboratories or companies. Also, anecdotes are brought up, which captured interesting circumstances in that evolutionary phase of the field. Because the focus was on historical perspectives rather than a comprehensive review of the field, recent developments intentionally were not addressed.
  •  
3.
  • Christiansen, Sigurd, et al. (författare)
  • Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed-Phase Clouds
  • 2020
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 125:19
  • Tidskriftsartikel (refereegranskat)abstract
    • As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN-derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a κ value of ∼1.0. Large-eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed-phase low-level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed-phase cloud properties do not depend strongly on κ, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed-phase clouds.
  •  
4.
  • Ickes, Luisa, 1986, et al. (författare)
  • The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:18, s. 11089-11117
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, sea spray as well as the biological material it contains has received increased attention as a source of ice-nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. In the Arctic, these INPs can influence water-ice partitioning in low-level clouds and thereby the cloud lifetime, with consequences for the surface energy budget, sea ice formation and melt, and climate. Marine aerosol is of a diverse nature, so identifying sources of INPs is challenging. One fraction of marine bioaerosol (phytoplankton and their exudates) has been a particular focus of marine INP research. In our study we attempt to address three main questions. Firstly, we compare the ice-nucleating ability of two common phytoplankton species with Arctic seawater microlayer samples using the same instrumentation to see if these phytoplankton species produce ice-nucleating material with sufficient activity to account for the ice nucleation observed in Arctic microlayer samples. We present the first measurements of the ice-nucleating ability of two predominant phytoplankton species: Melosira arctica, a common Arctic diatom species, and Skeletonema marinoi, a ubiquitous diatom species across oceans worldwide. To determine the potential effect of nutrient conditions and characteristics of the algal culture, such as the amount of organic carbon associated with algal cells, on the ice nucleation activity, Skeletonema marinoi was grown under different nutrient regimes. From comparison of the ice nucleation data of the algal cultures to those obtained from a range of sea surface microlayer (SML) samples obtained during three different field expeditions to the Arctic (ACCACIA, NETCARE, and ASCOS), we found that they were not as ice active as the investigated microlayer samples, although these diatoms do produce ice-nucleating material. Secondly, to improve our understanding of local Arctic marine sources as atmospheric INPs we applied two aerosolization techniques to analyse the ice-nucleating ability of aerosolized microlayer and algal samples. The aerosols were generated either by direct nebulization of the undiluted bulk solutions or by the addition of the samples to a sea spray simulation chamber filled with artificial seawater. The latter method generates aerosol particles using a plunging jet to mimic the process of oceanic wave breaking. We observed that the aerosols produced using this approach can be ice active, indicating that the ice-nucleating material in seawater can indeed transfer to the aerosol phase. Thirdly, we attempted to measure ice nucleation activity across the entire temperature range relevant for mixed-phase clouds using a suite of ice nucleation measurement techniques - an expansion cloud chamber, a continuous-flow diffusion chamber, and a cold stage. In order to compare the measurements made using the different instruments, we have normalized the data in relation to the mass of salt present in the nascent sea spray aerosol. At temperatures above 248K some of the SML samples were very effective at nucleating ice, but there was substantial variability between the different samples. In contrast, there was much less variability between samples below 248 K. We discuss our results in the context of aerosol-cloud interactions in the Arctic with a focus on furthering our understanding of which INP types may be important in the Arctic atmosphere.
  •  
5.
  • Ostli, Elise R., et al. (författare)
  • Limitations of Ultrathin Al2O3 Coatings on LNMO Cathodes
  • 2021
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 6:45, s. 30644-30655
  • Tidskriftsartikel (refereegranskat)abstract
    • This study demonstrates the application of Al2O3 coatings for the high-voltage cathode material LiNi0.5–xMn1.5+xO4−δ (LNMO) by atomic layer deposition. The ultrathin and uniform coatings (0.6–1.7 nm) were deposited on LNMO particles and characterized by scanning transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray photoelectron spectroscopy. Galvanostatic charge discharge cycling in half cells revealed, in contrast to many published studies, that even coatings of a thickness of 1 nm were detrimental to the cycling performance of LNMO. The complete coverage of the LNMO particles by the Al2O3 coating can form a Li-ion diffusion barrier, which leads to high overpotentials and reduced reversible capacity. Several reports on Al2O3-coated LNMO using alternative coating methods, which would lead to a less homogeneous coating, revealed the superior electrochemical properties of the Al2O3-coated LNMO, suggesting that complete coverage of the particles might in fact be a disadvantage. We show that transition metal ion dissolution during prolonged cycling at 50 °C is not hindered by the coating, resulting in Ni and Mn deposits on the Li counter electrode. The Al2O3-coated LNMO particles showed severe signs of pitting dissolution, which may be attributed to HF attack caused by side reactions between the electrolyte and the Al2O3 coating, which can lead to additional HF formation. The pitting dissolution was most severe for the thickest coating (1.7 nm). The uniform coating coverage may lead to non-uniform conduction paths for Li, where the active sites are more susceptible to HF attack. Few benefits of applications of very thin, uniform, and amorphous Al2O3 coatings could thus be verified, and the coating is not offering long-term protection from HF attack.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy