SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Heyong 1989 ) "

Sökning: WFRF:(Wang Heyong 1989 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xu, Weidong, 1988-, et al. (författare)
  • Rational molecular passivation for high-performance perovskite light-emitting diodes
  • 2019
  • Ingår i: Nature Photonics. - : Springer Nature Publishing AG. - 1749-4885 .- 1749-4893. ; 13:6, s. 418-424
  • Tidskriftsartikel (refereegranskat)abstract
    • A major efficiency limit for solution-processed perovskite optoelectronic devices, for example light-emitting diodes, is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures influence the effectiveness of passivation. We show that the so far largely ignored hydrogen bonds play a critical role in affecting the passivation. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring in the perovskite, we significantly enhance the interaction with defect sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near-infrared perovskite light-emitting diodes with a record external quantum efficiency of 21.6%. In addition, our passivated perovskite light-emitting diodes maintain a high external quantum efficiency of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm−2, making them more attractive than the most efficient organic and quantum-dot light-emitting diodes at high excitations.
  •  
2.
  • Wang, Heyong, 1989-, et al. (författare)
  • Impacts of the Lattice Strain on Perovskite Light-Emitting Diodes
  • 2023
  • Ingår i: Advanced Energy Materials. - : Wiley-V C H Verlag GMBH. - 1614-6832 .- 1614-6840. ; 13:33
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of perovskite light-emitting diodes (PeLEDs) with both high efficiency and excellent stability remains challenging. Herein, a strong correlation between the lattice strain in perovskite films and the stability of resulting PeLEDs is revealed. Based on high-efficiency PeLEDs, the device lifetime is optimized by rationally tailoring the lattice strain in perovskite films. A PeLED with a high peak external quantum efficiency of 18.2% and a long lifetime of 151 h (T-70, under a current density of 20 mA cm(-2)) is realized with a minimized lattice strain in the perovskite film. In addition, an increase in the lattice strain is found during the long-time device stability test, indicating that the degradation of the local perovskite lattice structure could be one of the degradation mechanisms for long-term stable PeLEDs.
  •  
3.
  • Chen, Zhan, et al. (författare)
  • Photoluminescence Enhancement for Efficient Mixed-Halide Blue Perovskite Light-Emitting Diodes
  • 2023
  • Ingår i: Advanced Optical Materials. - : WILEY-V C H VERLAG GMBH. - 2162-7568 .- 2195-1071. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of highly efficient blue perovskite light-emitting diodes (PeLEDs) remains a big challenge, requiring more fundamental investigations. In this work, significant photoluminescence enhancement in mixed halide blue perovskite films is demonstrated by using a molecule, benzylphosphonic acid, which eventually doubles the external quantum efficiency to 6.3% in sky-blue PeLEDs. The photoluminescence enhancement is achieved by forming an oxide-bonded perovskite surface at grain boundaries and suppressing electron-phonon interaction, which enhances the radiative recombination rate and reduces the nonradiative recombination rate, respectively. Moreover, severe thermal quenching is observed in the blue perovskite films, which can be explained by a two-step mechanism involving exciton dissociation and electron-phonon interaction. The results suggest that enhancing the radiative recombination rate and reducing the electron-phonon interaction-induced nonradiative recombination rate are crucial for achieving blue perovskite films with strong emission at or above room temperature.
  •  
4.
  • Wang, Heyong, 1989- (författare)
  • High-Quality Perovskite Films for Efficient and Stable Light-Emitting Diodes
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Metal halide perovskites have attracted significant attention for light-emitting applications, because of their excellent properties, such as high photoluminescence quantum yields (PLQYs), good charge mobility, narrow emission bandwidth, readily tunable emission spectra ranging from ultraviolet to near-infrared, and solution processability. Since the first room-temperature perovskite-based light-emitting diodes (PeLEDs) reported in 2014, tremendous efforts have been made to promote the efficiencies of PeLEDs, including theoretical simulation, materials design, and device engineering. To reach the ultimate goal of commercialization, PeLEDs with both high-efficiency and long-term operational stability are desired. Achieving high-quality perovskite emissive films is key towards this goal. Centering around the high-quality perovskite films, in this thesis, we demonstrate effective synthesis strategies for the deposition of high-quality perovskite films (including both three-dimensional and mixed-dimensional perovskites) and investigate the effects of ion migration in the perovskite films on the performance of PeLEDs.Due to the fast crystallization nature of perovskites and the low formation energy of defects, controlling the crystallization processes of these films has proved to be an effective approach for achieving high-quality perovskite films. For three-dimensional (3D) perovskite films, we have controlled the formation of these films through the assistance of molecules with the amino group. Herein, we have chosen an electron-transport molecule with two amino groups, 4,4’-diaminodiphenyl sulfone (DDS), to control the crystallization process of perovskite films (Paper 1). The resulting perovskite films consists of in-situ formed high quality perovskite nanocrystals embedded in the electron-transport molecular matrix, resulting in improved PLQYs and structural stability. PeLEDs based on these perovskite films have exhibited both high efficiency and long operational stability.In addition, we have investigated the formation of mixed-dimensional perovskite films. Efficient PeLEDs based on mixed-dimensional perovskite films were fabricated with tin dioxide (SnO2) as an electron transport layer (Paper 3). We also note that the deposition methods have a significant impact on the morphology and optical properties of prepared mixed-dimensional perovskite films (Paper 4). In addition, we provide an effective method to extend the deposition of mixed-dimensional perovskite films, replacing organic ammonium halides with amines in the perovskite precursor solutions to form organic spacer cations through the in-situ protonation process of amines (Paper 2).In spite of these efforts, the performance of PeLEDs is still far from the commercialization standard, partially limited by ion migration. In Paper 5, we discuss impacts of mobile ions in the perovskite films on the performance of PeLEDs. We find that a dynamic redistribution of mobile ions can change current density of a device, leading to EQE/hysteresis during forward and reverse voltage scan and enhanced EQE under constant driving voltages. In addition, we have found that excess mobile ions in the perovskite layer can aggravate the hysteresis and shorten the operational stability of PeLEDs.In this thesis, we also discuss the remaining key challenges in the PeLED field, including the achievement of high-performance blue, white, and lead-free PeLEDs, as well as possible strategies to address these challenges. We hope that our research findings provide insights into the basic science behind the perovskite materials, and broadly benefit other optoelectronic communities, such as perovskite solar cells, flexible electronics, and so on.
  •  
5.
  • Yu, Hongling, 1987-, et al. (författare)
  • Single-emissive-layer all-perovskite white light-emitting diodes employing segregated mixed halide perovskite crystals
  • 2020
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 11:41, s. 11338-11343
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have demonstrated impressive properties for achieving efficient monochromatic light-emitting diodes. However, the development of white perovskite light-emitting diodes (PeLEDs) remains a big challenge. Here, we demonstrate a single-emissive-layer all-perovskite white PeLED using a mixed halide perovskite film as the emissive layer. The perovskite film consists of separated mixed halide perovskite phases with blue and red emissions, which are beneficial for suppressing halide anion exchange and preventing charge transfer. As a result, the white PeLED shows balanced white light emission with Commission Internationale de L'Eclairage coordinates of (0.33, 0.33). In addition, we find that the achievement of white light emission from mixed halide perovskites strongly depends on effective modulation of the halide salt precursors, especially lead bromide and benzamidine hydrochloride in our case. Our work provides very useful guidelines for realizing single-emissive-layer all-perovskite white PeLEDs based on mixed halide perovskites, which will spur the development of high-performance white PeLEDs.
  •  
6.
  • Zhang, Jibin, et al. (författare)
  • A Multifunctional "Halide-Equivalent" Anion Enabling Efficient CsPb(Br/I)(3) Nanocrystals Pure-Red Light-Emitting Diodes with External Quantum Efficiency Exceeding 23%
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure-red perovskite LEDs (PeLEDs) based on CsPb(Br/I)(3) nanocrystals (NCs) usually suffer from a compromise in emission efficiency and spectral stability on account of the surface halide vacancies-induced nonradiative recombination loss, halide phase segregation, and self-doping effect. Herein, a "halide-equivalent" anion of benzenesulfonate (BS-) is introduced into CsPb(Br/I)(3) NCs as multifunctional additive to simultaneously address the above challenging issues. Joint experiment-theory characterizations reveal that the BS- can not only passivate the uncoordinated Pb2+-related defects at the surface of NCs, but also increase the formation energy of halide vacancies. Moreover, because of the strong electron-withdrawing property of sulfonate group, electrons are expected to transfer from the CsPb(Br/I)(3) NC to BS- for reducing the self-doping effect and altering the n-type behavior of CsPb(Br/I)(3) NCs to near ambipolarity. Eventually, synergistic boost in device performance is achieved for pure-red PeLEDs with CIE coordinates of (0.70, 0.30) and a champion external quantum efficiency of 23.5%, which is one of the best value among the ever-reported red PeLEDs approaching to the Rec. 2020 red primary color. Moreover, the BS--modified PeLED exhibits negligible wavelength shift under different operating voltages. This strategy paves an efficient way for improving the efficiency and stability of pure-red PeLEDs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy