SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Junke) "

Sökning: WFRF:(Wang Junke)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gao, Mingming, et al. (författare)
  • Engineered 2D MXene-based materials for advanced supercapacitors and micro-supercapacitors
  • 2024
  • Ingår i: Materials Today. - 1369-7021 .- 1873-4103. ; 72, s. 318-358
  • Forskningsöversikt (refereegranskat)abstract
    • The class of two-dimensional transition metal carbides/nitrides/oxycarbides (known as MXenes) has shown great potential in energy storage applications due to their intrinsic layered structure, outstanding electrical conductivity, tunable surface chemistry, and unique physicochemical properties. This review summarizes the latest progresses of MXene-based materials for supercapacitors and micro-supercapacitors. First, state-of-the-art structural engineering strategies for the construction of novel MXene-based electrodes are highlighted, as the electrochemical performance of MXenes is influenced by their structure, such as interlayer spacing and surface functional group density. Furthermore, the charge storage mechanisms of MXene-based electrodes in different electrolytes are discussed to stimulate further design and development of tailored materials for high-performance devices. Moreover, different device fabrication technologies are summarized and the achievements of specific device geometries (e.g., fiber-shape, planar-type, and three-dimensional devices) containing MXene-based materials are critically reviewed. Finally, perspectives and outlook for the development of high-performance MXene-based electrodes in terms of material engineering, performance improvement and device innovation are provided, clearly indicating research directions for next-generation advanced energy storage devices.
  •  
2.
  • Li, Zhaojun, 1989, et al. (författare)
  • High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants
  • 2018
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855. ; 45, s. 368-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing interests have been devoted to the synthesis of polymer acceptors as alternatives to fullerene derivatives to realize high-performance and stable all-polymer solar cells (all-PSCs). So far, one of the key factors that limit the performance of all-PSCs is low photocurrent density (normally < 14 mA/cm 2 ). One potential solution is to improve the dielectric constants (ε r ) of polyme r :polymer blends, which tend to reduce the binding energy of excitons, thus boosting the exciton dissociation efficiencies. Nevertheless, the correlation between ε r and photovoltaic performance has been rarely investigated for all-PSCs. In this work, five fluorinated naphthalene diimide (NDI)-based acceptor polymers, with different content of fluorine were synthesized. The incorporation of fluorine increased the ε r of the acceptor polymers and blend films, which improved the charge generation and overall photocurrent of the all-PSCs. As a result, the PTB7-Th:PNDI-FT10 all-PSC attained a high power conversion efficiency (PCE) of 7.3% with a photocurrent density of 14.7 mA/cm 2 , which surpassed the values reported for the all-PSC based on the non-fluorinated acceptor PNDI-T10. Interestingly, similarly high photovoltaic performance was maintained regardless of a large variation of donor:acceptor ratios, which revealed the good morphological tolerance and the potential for robust production capability of all-PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy