SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Meina) "

Sökning: WFRF:(Wang Meina)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dabkowska, Aleksandra P., et al. (författare)
  • Non-lamellar lipid assembly at interfaces : controlling layer structure by responsive nanogel particles
  • 2017
  • Ingår i: Interface Focus. - : ROYAL SOC. - 2042-8898 .- 2042-8901. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological membranes do not only occur as planar bilayer structures, but depending on the lipid composition, can also curve into intriguing three-dimensional structures. In order to fully understand the biological implications as well as to reveal the full potential for applications, e.g. for drug delivery and other biomedical devices, of such structures, well-defined model systems are required. Here, we discuss the formation of lipid non-lamellar liquid crystalline (LC) surface layers spin-coated from the constituting lipids followed by hydration of the lipid layer. We demonstrate that hybrid lipid polymer films can be formed with different properties compared with the neat lipid LC layers. The nanostructure and morphologies of the lipid films formed reflect those in the bulk. Most notably, mixed lipid layers, which are composed of glycerol monooleate and diglycerol monooleate with poly(N-isopropylacrylamide) nanogels, can form films of reverse cubic phases that are capable of responding to temperature stimulus. Owing to the presence of the nanogel particles, changing the temperature not only regulates the hydration of the cubic phase lipid films, but also the lateral organization of the lipid domains within the lipid self-assembled film. This opens up the possibility for new nanostructured materials based on lipid-polymer responsive layers.
  •  
2.
  • Pei, Cuiying, et al. (författare)
  • Quasi 3D polymerization in C60 bilayers in a fullerene solvate
  • 2017
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 124, s. 499-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The polymerization of fullerenes has been an interesting topic for almost three decades. A rich polymeric phase diagram of C60 has been drawn under a variety of pressure-temperature conditions. However, only linear or perpendicular linkages of C60 are found in the ordered phases. Here we used a unique bilayer structural solvate, C60∙1,1,2-trichloroethane (C60∙1TCAN), to generate a novel quasi-3D C60 polymer under high pressure and/or high temperature. Using Raman, IR spectroscopy and X-ray diffraction, we observe that the solvent molecules play a crucial role in confining the [2+2] cycloaddition bonds of C60s forming in the upper and lower layers alternately. The relatively long distance between the two bilayers restricts the covalent linkage extended in a single individual bilayer. Our studies not only enrich the phase diagram of polymeric C60, but also facilitate targeted design and synthesis of unique C60 polymers.
  •  
3.
  • Wang, Meina, et al. (författare)
  • Assembling responsive microgels at responsive lipid membranes
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 116:12, s. 5442-5450
  • Tidskriftsartikel (refereegranskat)abstract
    • Directed colloidal self-assembly at fluid interfaces can have a large impact in the fields of nanotechnology, materials, and biomedical sciences. The ability to control interfacial self-assembly relies on the fine interplay between bulk and surface interactions. Here, we investigate the interfacial assembly of thermoresponsive microgels and lipogels at the surface of giant unilamellar vesicles (GUVs) consisting of phospholipids bilayers with different compositions. By altering the properties of the lipid membrane and the microgel particles, it is possible to control the adsorption/desorption processes as well as the organization and dynamics of the colloids at the vesicle surface. No translocation of the microgels and lipogels through the membrane was observed for any of the membrane compositions and temperatures investigated. The lipid membranes with fluid chains provide highly dynamic interfaces that can host and mediate long-range ordering into 2D hexagonal crystals. This is in clear contrast to the conditions when the membranes are composed of lipids with solid chains, where there is no crystalline arrangement, and most of the particles desorb from the membrane. Likewise, we show that in segregated membranes, the soft microgel colloids form closely packed 2D crystals on the fluid bilayer domains, while hardly any particles adhere to the more solid bilayer domains. These findings thus present an approach for selective and controlled colloidal assembly at lipid membranes, opening routes toward the development of tunable soft materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy