SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Xinrui) "

Sökning: WFRF:(Wang Xinrui)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Liangdong, et al. (författare)
  • Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 10:11, s. 3171-3175
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) perovskites incorporating hydrophobic organic spacer cations show improved film stability and morphology compared to their three-dimensional (3D) counterparts. However, 2D perovskites usually exhibit low photoluminescence quantum efficiency (PLQE) owing to strong exciton-phonon interaction at room temperature, which limits their efficiency in light-emitting diodes (LEDs). Here, we demonstrate that the device performance of 2D perovskite LEDs can be significantly enhanced by doping Mn(2+)in (benzimidazolium)(2)PbI4 2D perovskite films to suppress the exciton-phonon interaction. The distorted [PbI6](4-) octahedra by Mn-doping and the rigid benzimidazolium (BIZ) ring without branched chains in the 2D perovskite structure lead to improved crystallinity and rigidity of the perovskites, resulting in suppressed phonon-exciton interaction and enhanced PLQE. On the basis of this strategy, for the first time, we report yellow electroluminescence from free excitons in 2D (n = 1) perovskites with a maximum brightness of 225 cd m(-2) and a peak EQE of 0.045%.
  •  
2.
  • Shen, Jiacai, et al. (författare)
  • First-Principles Observation of Bonded 2D B4C3 Bilayers
  • 2021
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 6:20, s. 13218-13224
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) B-C compounds possess rich allotropic structures with many applications. Obtaining new 2D B4C3 structures is highly desirable due to the novel applications of three-dimensional (3D) B4C3 in protections. In this work, we proposed a new family of 2D B4C3 from the first-principles calculations. Distinct from previous observations, this family of 2D B4C3 consists of bonded 2D B4C3 bilayers. Six different types of bilayers with distinct bonded structures are found. The phonon spectrum calculations and ab initio molecular dynamics simulations at room temperature demonstrate their dynamic and thermal stabilities. Low formation energies suggest the high possibility of realizing such structures in experiments. Rich electronic structures are found, and the predicted Young's moduli are even higher than those of the previous ones. It is revealed that the unique electronic and mechanical properties are rooted in the bonding structures, indicating the prompting applications of this family of 2D B4C3 materials in photovoltaics, nanoelectronics, and nanomechanics.
  •  
3.
  • Shi, Tian-Le, et al. (författare)
  • Differential gene expression and potential regulatory network of fatty acid biosynthesis during fruit and leaf development in yellowhorn (Xanthoceras sorbifolium), an oil-producing tree with significant deployment values
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Xanthoceras sorbifolium (yellowhorn) is a woody oil plant with super stress resistance and excellent oil characteristics. The yellowhorn oil can be used as biofuel and edible oil with high nutritional and medicinal value. However, genetic studies on yellowhorn are just in the beginning, and fundamental biological questions regarding its very long-chain fatty acid (VLCFA) biosynthesis pathway remain largely unknown. In this study, we reconstructed the VLCFA biosynthesis pathway and annotated 137 genes encoding relevant enzymes. We identified four oleosin genes that package triacylglycerols (TAGs) and are specifically expressed in fruits, likely playing key roles in yellowhorn oil production. Especially, by examining time-ordered gene co-expression network (TO-GCN) constructed from fruit and leaf developments, we identified key enzymatic genes and potential regulatory transcription factors involved in VLCFA synthesis. In fruits, we further inferred a hierarchical regulatory network with MYB-related (XS03G0296800) and B3 (XS02G0057600) transcription factors as top-tier regulators, providing clues into factors controlling carbon flux into fatty acids. Our results offer new insights into key genes and transcriptional regulators governing fatty acid production in yellowhorn, laying the foundation for efforts to optimize oil content and fatty acid composition. Moreover, the gene expression patterns and putative regulatory relationships identified here will inform metabolic engineering and molecular breeding approaches tailored to meet biofuel and bioproduct demands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy