SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yujie) "

Sökning: WFRF:(Wang Yujie)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • de Vries, Paul S., et al. (författare)
  • Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
  • 2019
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 188:6, s. 1033-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
  •  
4.
  • Huang, Tao, et al. (författare)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
5.
  • Wang, Yuying, et al. (författare)
  • The prevalence of adverse reactions among individuals with three-dose COVID-19 vaccination
  • 2023
  • Ingår i: Journal of Infection and Public Health. - : Elsevier BV. - 1876-0341. ; 16:1, s. 125-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Considering the adverse reactions to vaccination against coronavirus disease 2019 (COVID-19), some people, particularly the elderly and those with underlying medical conditions, are hesitant to be vaccinated. This study aimed to explore the prevalence of adverse reactions and provide direct evidence of vaccine safety, mainly for the elderly and people with underlying medical conditions, to receive COVID-19 vaccination. Methods: From 1st March to 30th April 2022, we conducted an online survey of people who had completed three doses of COVID-19 vaccination by convenience sampling. Adverse reaction rates and 95% confidence intervals were calculated. In addition, conditional logistic regression was used to compare the differences in adverse reactions among the elderly and those with underlying medical conditions with the general population. Results: A total of 3339 individuals were included in this study, of which 2335 (69.9%) were female, with an average age of 32.1 ± 11.4 years. The prevalence of adverse reactions after the first dose of inactivated vaccine was 24.6% (23.1–26.2%), 19.2% (17.8–20.7%) for the second dose, and 19.1% (17.7–20.6%) for the booster dose; among individuals using messenger RNA vaccines, the prevalence was 42.7% (32.3–53.6%) for the first dose, 47.2% (36.5–58.1%) for the second dose, and 46.1% (35.4–57.0%) for the booster dose. Compared with the general population, the prevalence of adverse events did not differ in individuals with underlying medical conditions and those aged 60 and above. Conclusions: For individuals with underlying medical conditions and those aged 60 and above, the prevalence of adverse reactions is similar to that of the general population, which provides a scientific basis regarding vaccination safety for these populations.
  •  
6.
  • Ding, Ming, et al. (författare)
  • Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study
  • 2017
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833 .- 0959-8138. ; 356
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
  •  
7.
  • Li, Shuqi, et al. (författare)
  • Rtt105 functions as a chaperone for replication protein A to preserve genome stability
  • 2018
  • Ingår i: EMBO Journal. - : Wiley-VCH Verlagsgesellschaft. - 0261-4189 .- 1460-2075. ; 37:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.
  •  
8.
  • Liu, Huan, et al. (författare)
  • The first human induced pluripotent stem cell line of Kashin–Beck disease reveals involvement of heparan sulfate proteoglycan biosynthesis and PPAR pathway
  • 2022
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 289:1, s. 279-293
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Kashin-Beck disease (KBD) is an endemic osteochondropathy. Due to a lack of suitable animal or cellular disease models, the research progress on KBD has been limited. Our goal was to establish the first disease-specific human induced pluripotent stem cells (hiPSCs) cellular disease model of KBD, and to explore its etiology and pathogenesis exploiting transcriptome sequencing.METHODS: HiPSCs were reprogrammed from dermal fibroblasts of two KBD and one healthy control donors via integration-free vectors. Subsequently, hiPSCs were differentiated into chondrocytes through three-week culture. Gene expression profiles in KBD, normal primary chondrocytes and hiPSC-derived chondrocytes were defined by RNA sequencing. A Venn diagram was constructed to show the number of shared differentially expressed genes (DEGs) between KBD and normal. Gene oncology and Kyoto Encyclopedia of Genes and Genomes annotations were performed, and six DEGs were further validated in other individuals by real-time quantitative reverse transcription PCR (RT-qPCR).RESULTS: KBD cellular disease models were successfully established by generation of hiPSC lines. Seventeen consistent and significant DEGs present in all compared groups (KBD and normal) were identified. RT-qPCR validation gave consistent results with the sequencing data. Glycosaminoglycan biosynthesis-heparan sulfate/heparin, PPAR signaling pathway and cell adhesion molecules (CAMs) pathways were identified to be significantly altered in KBD.CONCLUSION: Differentiated chondrocytes deriving from KBD-origin hiPSCs provide the first cellular disease model for etiological studies of KBD. This study also provides new sights into the pathogenesis and etiology of KBD and is likely to inform the development of targeted therapeutics for its treatment.
  •  
9.
  • Ning, Yujie, et al. (författare)
  • Nutrients other than selenium are important for promoting children's health in Kashin-Beck disease areas
  • 2018
  • Ingår i: Biological Trace Element Research. - : Springer. - 0163-4984 .- 1559-0720. ; 183:2, s. 233-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Overall nutritional status has been proved associated with people's health. The overall nutritional status of children in Kashin-Beck disease (KBD) areas has been overlooked for decades. Therefore, it is worth investigating in the current generation to gather evidence and make suggestions for improvement. A cross-sectional study with three 24-h dietary recalls was conducted to collect raw data on the daily food intake of children. Recorded food was converted into daily nutrient intakes using CDGSS 3.0 software. WHO AnthroPlus software was used to analyse the BMI-for-age z-score (BAZ) for estimating the overall nutrition status of children. All the comparisons and regression analyses were conducted with SPSS 18.0 software. Multiple nutrient intakes among children from the Se-supplemented KBD-endemic were under the estimated average requirement. The protein-to-carbohydrate ratio (P/C ratio) was significantly higher in children from the non-Se-supplemented KBD-endemic area than the other areas (P < 0.001). The children's BAZ was negatively associated with age (B = -0.095, P < 0.001) and the number of KBD relatives (B = -0.277, P = 0.04), and it was positively associated with better housing conditions, receiving colostrum, and daily intakes of niacin and zinc by multivariate regression analysis (F = 10.337, R = 0.609, P < 0.001).Compared to non-Se-supplemented KBD-endemic area and non-endemic areas, children in Se-supplemented KBD-endemic areas have an insufficient intake of multiple nutrients. School breakfast and lunch programmes are recommended, and strict implementation is the key to ensuring a positive effect.
  •  
10.
  • Visvanathan, Kala, et al. (författare)
  • Circulating vitamin D and breast cancer risk : an international pooling project of 17 cohorts
  • 2023
  • Ingår i: European Journal of Epidemiology. - : Springer Science+Business Media B.V.. - 0393-2990 .- 1573-7284. ; 38, s. 11-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Laboratory and animal research support a protective role for vitamin D in breast carcinogenesis, but epidemiologic studies have been inconclusive. To examine comprehensively the relationship of circulating 25-hydroxyvitamin D [25(OH)D] to subsequent breast cancer incidence, we harmonized and pooled participant-level data from 10 U.S. and 7 European prospective cohorts. Included were 10,484 invasive breast cancer cases and 12,953 matched controls. Median age (interdecile range) was 57 (42–68) years at blood collection and 63 (49–75) years at breast cancer diagnosis. Prediagnostic circulating 25(OH)D was either newly measured using a widely accepted immunoassay and laboratory or, if previously measured by the cohort, calibrated to this assay to permit using a common metric. Study-specific relative risks (RRs) for season-standardized 25(OH)D concentrations were estimated by conditional logistic regression and combined by random-effects models. Circulating 25(OH)D increased from a median of 22.6 nmol/L in consortium-wide decile 1 to 93.2 nmol/L in decile 10. Breast cancer risk in each decile was not statistically significantly different from risk in decile 5 in models adjusted for breast cancer risk factors, and no trend was apparent (P-trend = 0.64). Compared to women with sufficient 25(OH)D based on Institute of Medicine guidelines (50– < 62.5 nmol/L), RRs were not statistically significantly different at either low concentrations (< 20 nmol/L, 3% of controls) or high concentrations (100– < 125 nmol/L, 3% of controls; ≥ 125 nmol/L, 0.7% of controls). RR per 25 nmol/L increase in 25(OH)D was 0.99 [95% confidence intervaI (CI) 0.95–1.03]. Associations remained null across subgroups, including those defined by body mass index, physical activity, latitude, and season of blood collection. Although none of the associations by tumor characteristics reached statistical significance, suggestive inverse associations were seen for distant and triple negative tumors. Circulating 25(OH)D, comparably measured in 17 international cohorts and season-standardized, was not related to subsequent incidence of invasive breast cancer over a broad range in vitamin D status.
  •  
11.
  • Wang, Kai, et al. (författare)
  • Zinc anode based alkaline energy storage system: Recent progress and future perspectives of zinc–silver battery
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 69
  • Forskningsöversikt (refereegranskat)abstract
    • Rechargeable zinc-based batteries have come to the forefront of energy storage field with a surprising pace during last decade due to the advantageous safety, abundance and relatively low cost, making them important supplements of lithium-ion batteries. As a significant role in zinc-based batteries, zinc-silver battery owns the advantages of high specific energy density, stable working voltage, high charging efficiency, safety and environmental friendliness, and it has been widely used in military such as in aerospace, deep water manned and civil field such as energy supply for watch and hearing aid. However, it is still suffering from a few drawbacks such as unsatisfactory cycle life, low utilization of the cathode. This review introduces the basic principles of zinc-silver batteries and elaborates the battery configurations aiming to understand its working mechanisms as well as the related issues. Most importantly, the very recent research updates and the concerns have arisen in the development are summarized from conventional cell to flexible device and hybrid device. Finally, the challenges and perspectives of zinc-silver batteries are further prospected to give a broad idea to readers new in the area and trigger inspirations for motivated researchers to further widen the utilization of silver-zinc batteries.
  •  
12.
  • Wang, Xi, et al. (författare)
  • Gene expression signature in endemic osteoarthritis by microarray analysis
  • 2015
  • Ingår i: International Journal of Molecular Sciences. - Basel, Switzerland : MDPI. - 1661-6596 .- 1422-0067. ; 16:5, s. 11465-11481
  • Tidskriftsartikel (refereegranskat)abstract
    • Kashin-Beck Disease (KBD) is an endemic osteochondropathy with an unknown pathogenesis. Diagnosis of KBD is effective only in advanced cases, which eliminates the possibility of early treatment and leads to an inevitable exacerbation of symptoms. Therefore, we aim to identify an accurate blood-based gene signature for the detection of KBD. Previously published gene expression profile data on cartilage and peripheral blood mononuclear cells (PBMCs) from adults with KBD were compared to select potential target genes. Microarray analysis was conducted to evaluate the expression of the target genes in a cohort of 100 KBD patients and 100 healthy controls. A gene expression signature was identified using a training set, which was subsequently validated using an independent test set with a minimum redundancy maximum relevance (mRMR) algorithm and support vector machine (SVM) algorithm. Fifty unique genes were differentially expressed between KBD patients and healthy controls. A 20-gene signature was identified that distinguished between KBD patients and controls with 90% accuracy, 85% sensitivity, and 95% specificity. This study identified a 20-gene signature that accurately distinguishes between patients with KBD and controls using peripheral blood samples. These results promote the further development of blood-based genetic biomarkers for detection of KBD.
  •  
13.
  • Dong, Guangzhong, 1991, et al. (författare)
  • Dynamic Bayesian Network based Lithium-ion Battery Health Prognosis for Electric Vehicles
  • 2021
  • Ingår i: IEEE Transactions on Industrial Electronics. - 0278-0046 .- 1557-9948. ; 68:11, s. 10949-20958
  • Tidskriftsartikel (refereegranskat)abstract
    • IEEE Battery prognostics and health management (PHM) are essential for lithium-ion batteries in electric vehicles. In the battery PHM, accurate estimation of the battery state of health (SOH) and prediction of the remaining useful life (RUL) are crucial to ensure safe and efficient battery operation. This paper presents a probabilistic method for the battery degradation modeling and health prognosis based on the features extracted from the charging process using the dynamic Bayesian network (DBN). First, an aggregated feature, combining the incremental capacity analysis (ICA) of constant-current (CC) charging and the time constant of constant-voltage (CV) charging, is developed to characterize the battery degradation dynamics in case some CC or CV charging information is absent. The DBN is then employed to explore the underlying correlation between the battery aging and the extracted features. The proposed model treats the degradation dynamics as a rich family of probability distributions to model real-world battery operation more accurately. Moreover, the battery SOH estimation and RUL prediction are carried out using the particle filtering (PF) inference algorithm. Experimental tests are conducted on two different battery cells and the results show that the proposed methods can provide accurate and robust battery SOH estimation and reliable RUL prediction.
  •  
14.
  • Fernandes, Ricardo M.F. 1983-, et al. (författare)
  • Strong Spacer Length Effects on The Thermal Behavior and Mesophase Formation By Gemini Surfactants
  • 2015
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The self-aggregation properties in aqueous solution of gemini surfactants of the type alkanediyl-α,ω-bis(dodecyldimethylammonium bromides), 12-s-12, have been extensively reported and are known to be significantly influenced by the number of methylene groups, s, of the covalent spacer. In contrast, the thermal behavior of the anhydrous compounds as a function of varying s has not been investigated in a similarly systematic way. Herein, we present the thermal phase behavior of eight compounds of the 12-s-12 family (with s = 2-6, 8, 10 and 12), resorting to differential scanning calorimetry (DSC), polarized light microscopy (PLM) and X-ray diffraction (XRD). We find that compounds with either the shortest spacer, s = 2, or the longest ones—8, 10 and 12—form several smectic liquid-crystalline phases prior to isotropization to the liquid phase, with appearance of oily streaks, focal conics, mosaic and fan-shaped birefringent textures. In sharp contrast, gemini compounds with intermediate spacers, s = 3-6, decompose and do not form any disordered, fluid mesophases. Both the DSC thermodynamic parameters for the phase transitions and d00l spacings obtained from XRD show non-monotonic trends with spacer variation, indicating that there are significant differences in solid-state packing and melting process. Plausible molecular packing arrangements in the solid-state are presented, consistent with the XRD information and geometric considerations, and their influence on the phase behavior trends critically discussed.
  •  
15.
  • Guo, Xiong, et al. (författare)
  • Kashin-Beck Disease (KBD)
  • 2017
  • Ingår i: Endemic disease in China. - Beijing : People's Medical Publishing House. - 9787117247139 ; , s. 150-211
  • Bokkapitel (refereegranskat)
  •  
16.
  •  
17.
  • Luo, Yiqi, et al. (författare)
  • Toward more realistic projections of soil carbon dynamics by Earth system models
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 30:1, s. 40-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
  •  
18.
  • Ning, Yujie, et al. (författare)
  • Changes in the NF-κB signaling pathway in juvenile and adult patients with Kashin-Beck disease
  • 2019
  • Ingår i: Experimental Cell Research. - : Elsevier. - 0014-4827 .- 1090-2422. ; 379:2, s. 140-149
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the pathogenesis of Kashin-Beck disease (KBD), we compared the common signaling pathways in peripheral blood mononuclear cells (PBMCs) obtained from healthy juvenile and adults and KBD patients, and also from osteoarthritis (OA) patients. The PBMCs from 12 KBD and 12 healthy juvenile, and those from 20 adult KBD patients and 12 healthy donors were separately collected among the people living in the KBD endemic area. The patients were distinguished according to the national diagnosis criteria. Total RNAs were extracted for the determination of gene expressions by microarray analysis. Ingenuity Pathways Analysis (IPA) was employed to identify the signaling pathways significantly affected by juveniles' and adults' KBD, and OA. The expressions of NFκB-p65, cIAP2 and RANKL in the articular cartilage from both juvenile and adults were detected by immunohistochemistry. NF-κB signaling, apoptosis signaling, death receptor signaling and IL-6 signaling pathways were revealed to be the common affected signaling pathways in the juvenile and adult KBD and the OA. BIRC3 and EGR1 were identified as two common differentially expressed genes. The percentages of positive staining of NFκB-p65, cIAP2 and RANKL were reduced in adult KBD patients but significantly increased in juvenile KBD patients. NF-κB, one of the common signaling pathways between adult and juvenile KBD, was less prominent in the adult KBD patients.
  •  
19.
  • Ning, Yujie, et al. (författare)
  • Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China
  • 2022
  • Ingår i: Arthritis Research & Therapy. - : BioMed Central. - 1478-6354 .- 1478-6362. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients.Methods: Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed.Results: The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing.Conclusion: Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD.
  •  
20.
  • Ning, Yujie, et al. (författare)
  • Genetic Variants and Protein Alterations of Selenium- and T-2 Toxin-Responsive Genes Are Associated With Chondrocytic Damage in Endemic Osteoarthropathy
  • 2022
  • Ingår i: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of environmental factors in Kashin-Beck disease (KBD) remains unknown. We aimed to identify single nucleotide polymorphisms (SNPs) and protein alterations of selenium- and T-2 toxin-responsive genes to provide new evidence of chondrocytic damage in KBD. This study sampled the cubital venous blood of 258 subjects including 129 sex-matched KBD patients and 129 healthy controls for SNP detection. We applied an additive model, a dominant model, and a recessive model to identify significant SNPs. We then used the Comparative Toxicogenomics Database (CTD) to select selenium- and T-2 toxin-responsive genes with the candidate SNP loci. Finally, immunohistochemistry was applied to verify the protein expression of candidate genes in knee cartilage obtained from 15 subjects including 5 KBD, 5 osteoarthritis (OA), and 5 healthy controls. Forty-nine SNPs were genotyped in the current study. The C allele of rs6494629 was less frequent in KBD than in the controls (OR = 0.63, p = 0.011). Based on the CTD database, PPARG, ADAM12, IL6, SMAD3, and TIMP2 were identified to interact with selenium, sodium selenite, and T-2 toxin. KBD was found to be significantly associated with rs12629751 of PPARG (additive model: OR = 0.46, p = 0.012; dominant model: OR = 0.45, p = 0.049; recessive model: OR = 0.18, p = 0.018), rs1871054 of ADAM12 (dominant model: OR = 2.19, p = 0.022), rs1800796 of IL6 (dominant model: OR = 0.30, p = 0.003), rs6494629 of SMAD3 (additive model: OR = 0.65, p = 0.019; dominant model: OR = 0.52, p = 0.012), and rs4789936 of TIMP2 (recessive model: OR = 5.90, p = 0.024). Immunohistochemistry verified significantly upregulated PPARG, ADAM12, SMAD3, and TIMP2 in KBD compared with OA and normal controls (p < 0.05). Genetic polymorphisms of PPARG, ADAM12, SMAD3, and TIMP2 may contribute to the risk of KBD. These genes could promote the pathogenesis of KBD by disturbing ECM homeostasis.
  •  
21.
  • Ning, Yujie, et al. (författare)
  • Imbalance of dietary nutrients and the associated differentially expressed genes and pathways may play important roles in juvenile Kashin-Beck disease
  • 2018
  • Ingår i: Journal of Trace Elements in Medicine and Biology. - : Elsevier. - 0946-672X .- 1878-3252. ; 50, s. 441-460
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:Kashin-Beck disease (KBD) is a childhood-onset endemic osteoarthropathy in China. Nutrients including trace elements may play active roles in the development of KBD.OBJECTIVE:This study aimed to estimate the nutrient intakes of children in endemic areas and to identify the imbalanced nutrients associated differentially expressed genes in the juvenile patients with KBD.METHODS:In this cross-sectional study, a consecutive 3 day 24 h semi-quantitative dietary retrospect questionnaire was conducted to estimate the daily nutrient intakes of children using CDGSS 3.0 software. Gene profile analysis was employed to identify differentially expressed genes in peripheral blood mononuclear cells of children with KBD. GOC, CTD, KEGG, and REACTOME databases were used to establish the relationship between nutrients and nutrients-associated differentially expressed genes and pathways. Statistical analyses were accomplished by SPSS 18.0 software.RESULTS:Daily Se intakes without supplementation of children were significantly lower in Se-supplemented (Se + ) KBD areas (29.3 ∼ 29.6 mg/d) and non-endemic area (27.8 ± 7.9 mg/d) compared to non-Se-supplemented (Se-) KBD area (32.9 ± 7.9 mg/d, c2 = 20.24, P < .01). Children in Se+ KBD areas were suffering more serious insufficient intake of multiple nutrients, including vitamins-B2/-C/-E, Ca, Fe, Zn and I. Gene profile analysis combined with bioinformatics technique identified 34 nutrients associated differentially expressed genes and 10 significant pathways which are related to the pathological changes in juvenile KBD.CONCLUSIONS:Imbalance of dietary nutrients and nutrients-associated differentially expressed genes and pathways may play important roles in the development of juvenile KBD.
  •  
22.
  • Pérez Ràfols, Clara, et al. (författare)
  • Why Not Glycine Electrochemical Biosensors?
  • 2020
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 20:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycine monitoring is gaining importance as a biomarker in clinical analysis due to its involvement in multiple physiological functions, which results in glycine being one of the most analyzed biomolecules for diagnostics. This growing demand requires faster and more reliable, while affordable, analytical methods that can replace the current gold standard for glycine detection, which is based on sample extraction with subsequent use of liquid chromatography or fluorometric kits for its quantification in centralized laboratories. This work discusses electrochemical sensors and biosensors as an alternative option, focusing on their potential application for glycine determination in blood, urine, and cerebrospinal fluid, the three most widely used matrices for glycine analysis with clinical meaning. For electrochemical sensors, voltammetry/amperometry is the preferred readout (10 of the 13 papers collected in this review) and metal-based redox mediator modification is the predominant approach for electrode fabrication (11 of the 13 papers). However, none of the reported electrochemical sensors fulfill the requirements for direct analysis of biological fluids, most of them lacking appropriate selectivity, linear range of response, and/or capability of measuring at physiological conditions. Enhanced selectivity has been recently reported using biosensors (with an enzyme element in the electrode design), although this is still a very incipient approach. Currently, despite the benefits of electrochemistry, only optical biosensors have been successfully reported for glycine detection and, from all the inspected works, it is clear that bioengineering efforts will play a key role in the embellishment of selectivity and storage stability of the sensing element in the sensor.
  •  
23.
  • Qin, Danfeng, et al. (författare)
  • Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of Cd(II) and Pb(II)
  • 2017
  • Ingår i: Microchimica Acta. - : SPRINGER WIEN. - 0026-3672 .- 1436-5073. ; 184:8, s. 2759-2766
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors describe the preparation of carbon nanofibers (CNFs) with a three-dimensional network structure by one-step carbonization of bacterial cellulose at 800 degrees C. The 3D CNFs wrapped with Nafion polymer were cast on a glassy carbon electrode (GCE) which then enables sensitive detection of Cd(II) and Pb(II). Under optimized conditions and at typical stripping peaks of around -0.80 and -0.55 V (vs Ag/AgCl), the electrode exhibits high sensitivity and a wide analytical range of 2-100 mu g.L-1 for both Cd(II) and Pb(II). The detection limits are 0.38 mu g.L-1 for Cd(II) and 0.33 mu g.L-1 for Pb(II), respectively. The modified GCE was successfully employed to the determination of trace amounts of Cd(II) and Pb(II) in both tap water and waste water.
  •  
24.
  • Rehman, Hafeez Ur, et al. (författare)
  • High-cycle-life and high-loading copolymer network with potential application as a soft actuator
  • 2019
  • Ingår i: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermo-responsive polymer materials ate appealing in emerging fields including soft robotics, artificial muscles, and actuators. However, realising a single smart polymer material that can achieve immense strain, fast actuation, and high loading remains a challenge. We attempted to address these limitations by fabricating a thermo-responsive copolymer network structure of poly(urethane-caprolactone-siloxane). The relative concentrations of these precursors were adjusted to realise a high mechanical strength of >= 17 MPa, 100% shape fixation, and a quick shape recovery time of <= 15 s. Experimental results revealed that the soft segments largely determines the extensibility and crystallinity of the copolymer material. The thermal gradient of the soft part enables the copolymer to self-heal during shape recovery. The copolymer network was applied to a load lifting device as an artificial muscle and was able to lift 200 times its weight with a short response time of <5 s and maximum power density that was half that of mammalian skeletal muscles. With its fast actuation, high loading, and self-healing abilities, the developed therrno-activated smart copolymer material is potentially applicable to a wide range of fields such as soft robotics, biomimetic devices, and prosthetics.
  •  
25.
  • Sun, Weiwei, et al. (författare)
  • Monodispersed FeS 2 Electrocatalyst Anchored to Nitrogen-Doped Carbon Host for Lithium–Sulfur Batteries
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 32:43
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite their high theoretical energy density, lithium–sulfur (Li–S) batteries are hindered by practical challenges including sluggish conversion kinetics and shuttle effect of polysulfides. Here, a nitrogen-doped continuous porous carbon (CPC) host anchoring monodispersed sub-10 nm FeS2 nanoclusters (CPC@FeS2) is reported as an efficient catalytic matrix for sulfur cathode. This host shows strong adsorption of polysulfides, promising the inhibition of polysulfide shuttle and the promoted initial stage of catalytic conversion process. Moreover, fast lithium ion (Li-ion) diffusion and accelerated solid–solid conversion kinetics of Li2S2 to Li2S on CPC@FeS2 host guarantee boosted electrochemical kinetics for conversion process of sulfur species in Li–S cell, which gives a high utilization of sulfur under practical conditions of high loading and low electrolyte/sulfur (E/S) ratio. Therefore, the surfur cathode (S/CPC@FeS2) delivers a high specific capacity of 1459 mAh g−1 at 0.1 C, a stable cycling over 900 cycles with ultralow fading rate of 0.043% per cycle, and an enhanced rate capability compared with cathode only using carbon host. Further demonstration of this cathode in Li–S pouch cell shows a practical energy density of 372 Wh kg−1 with a sulfur loading of 7.1 mg cm−2 and an E/S ratio of 4 µL mg−1.
  •  
26.
  • Tang, Xiaopeng, et al. (författare)
  • A novel framework for Lithium-ion battery modeling considering uncertainties of temperature and aging
  • 2019
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904. ; 180, s. 162-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature and cell aging are two major factors that influence the reliability and safety of Li-ion batteries. A general battery model considering both temperature and degradation is often difficult to develop, given the fact that there are many different types of cells with different shapes and/or internal chemical components. In response, a migration-based framework is proposed in this paper for battery modeling, in which the effects of temperature and aging are treated as uncertainties. An accurate model for a fresh cell is established first and then migrated to the degraded batteries through a Bayes Monte Carlo method. Experiments are carried out on both LiFePO4 batteries and Li(Ni1/3Co1/3Mn1/3) O2 batteries under various ambient temperatures and aging levels. The results indicate that the typical voltage prediction error can be limited within ±20 mV, for the cases of temperature change up to 40 °C, and capacity degradation up to 20%. The proposed method paves ways to an effective battery management and energy control for electric vehicles or micro grid applications.
  •  
27.
  • Tang, Xiaopeng, et al. (författare)
  • Run-to-Run Control for Active Balancing of Lithium Iron Phosphate Battery Packs
  • 2020
  • Ingår i: IEEE Transactions on Power Electronics. - 0885-8993 .- 1941-0107. ; 35:2, s. 1499-1512
  • Tidskriftsartikel (refereegranskat)abstract
    • © 1986-2012 IEEE. Lithium iron phosphate battery packs are widely employed for energy storage in electrified vehicles and power grids. However, their flat voltage curves rendering the weakly observable state of charge are a critical stumbling block for charge equalization management. This paper focuses on the real-time active balancing of series-connected lithium iron phosphate batteries. In the absence of accurate in situ state information in the voltage plateau, a balancing current ratio (BCR) based algorithm is proposed for battery balancing. Then, BCR-based and voltage-based algorithms are fused, responsible for the balancing task within and beyond the voltage plateau, respectively. The balancing process is formulated as a batch-based run-to-run control problem, as the first time in the research area of battery management. The control algorithm acts in two timescales, including timewise control within each batch run and batchwise control at the end of each batch. Hardware-in-the-loop experiments demonstrate that the proposed balancing algorithm is able to release 97.1% of the theoretical capacity and can improve the capacity utilization by 5.7% from its benchmarking algorithm. Furthermore, the proposed algorithm can be coded in C language with the binary code in 118 328 bytes only and, thus, is readily implementable in real time.
  •  
28.
  • Wang, Hui, et al. (författare)
  • Promotion of NH3-SCR activity by sulfate-modification over mesoporous Fe doped CeO2 catalyst : Structure and mechanism
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : ELSEVIER. - 0304-3894 .- 1873-3336. ; 414
  • Tidskriftsartikel (refereegranskat)abstract
    • The mesoporous Fe doped CeO2 catalyst after modifying organic sulfate functional groups show an excellent activity with above 80% NOx conversion in a temperature range of 250-450 degrees C. These organic-like sulfate groups bound to the Fe-O-Ce species leads to the strong electron interaction between Fe3+-O-Ce4+ species and sulfate groups, which modifies the acidity and redox properties of catalyst. The strong ability of (SO)-O-=/S-O in sulfate groups to accommodate electrons from a basic molecule is a driving force in the generation of acidic properties, and thus promotes to produce new Bronsted acid sites. The bondage of Fe-O-Ce species obviously inhibits the creation of thermostable bidentate NO3- species. Besides, the redox cycles between Fe3+ and Ce4+ are disrupted, thus inhibiting NH3 oxidation at medium-high temperatures and resulting in the increase of NOx conversion. Furthermore, the in situ DRIFTS results show that for the fresh samples, the coordinate NH3 reacts not only with NO3 through L-H mechanism, but also with oxygen species to form NOx. Differently for sulfated sample, the coordinate NH3 might react with achieved NO2 instead of the oxygen species through E-R mechanism, meanwhile the NH4+ could react with the NO3- species through L-H mechanism.
  •  
29.
  • Wang, Qianyu, et al. (författare)
  • Electrochemical biosensor for glycine detection in biological fluids
  • 2021
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • We present herein the very first amperometric biosensor for the quantitative determination of glycine in diverse biological fluids. The biosensor is based on a novel quinoprotein that catalyzes the oxidation of glycine with high specificity. This process is coupled to the redox conversion of Prussian blue in the presence of hydrogen peroxide originating from the enzymatic reaction. The optimized tailoring of the biosensor design consists of the effective encapsulation of the quinoprotein in a chitosan matrix with the posterior addition of an outer Nafion layer, which is here demonstrated to suppress matrix interference. This is particularly important in the case of ascorbic acid, which is known to influence the redox behavior of the Prussian blue. The analytical performance of the biosensor demonstrates fast response time (<7 s), acceptable reversibility, reproducibility, and stability (<6% variation) as well as a wide linear range of response (25?500 ?M) that covers healthy (and even most unhealthy) physiological levels of glycine in blood/serum, urine and sweat. A total of 6 real samples from healthy patients and animals were analyzed: two serum, two urine and two sweat samples. The results were validated via commercially available fluorescence kit, displaying discrepancy of less than 9% in all the samples. The unique analytical features and effortless preparation of the new glycine biosensor position it at the forefront of current technologies towards decentralized clinical applications and sport performance monitoring.
  •  
30.
  • Wang, Xi, et al. (författare)
  • Alterations in the gut microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China
  • 2021
  • Ingår i: Cell Death and Disease. - : Nature Publishing Group. - 2041-4889 .- 2041-4889. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.
  •  
31.
  • Wang, Xi, et al. (författare)
  • Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis
  • 2021
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889 .- 2041-4889. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondrocytes are the key target cells of the cartilage degeneration that occurs in Kashin-Beck disease (KBD) and osteoarthritis (OA). However, the heterogeneity of articular cartilage cell types present in KBD and OA patients and healthy controls is still unknown, which has prevented the study of the pathophysiology of the mechanisms underlying the roles of different populations of chondrocytes in the processes leading to KBD and OA. Here, we aimed to identify the transcriptional programmes and all major cell populations in patients with KBD, patients with OA and healthy controls to identify the markers that discriminate among chondrocytes in these three groups. Single-cell RNA sequencing was performed to identify chondrocyte populations and their gene signatures in KBD, OA and healthy cells to investigate their differences as related to the pathogenetic mechanisms of these two osteochondral diseases. We performed immunohistochemistry and quantitative reverse-transcription PCR (qRT-PCR) assays to validate the markers for chondrocyte population. Ten clusters were labelled by cell type according to the expression of previously described markers, and one novel population was identified according to the expression of a new set of markers. The homeostatic and mitochondrial chondrocyte populations, which were identified by the expression of the unknown markers MT1X and MT2A and MT-ND1 and MT-ATP6, were markedly expanded in KBD. The regulatory chondrocyte population, identified by the expression of CHI3L1, was markedly expanded in OA. Our study allows us to better understand the heterogeneity of chondrocytes in KBD and OA and provides new evidence of differences in the pathogenetic mechanisms between these two diseases.
  •  
32.
  • Wang, Zhengyan, et al. (författare)
  • Dialing in Catalytic Sites on Metal Organic Framework Nodes : MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:47, s. 53537-53546
  • Tidskriftsartikel (refereegranskat)abstract
    • Many metal organic frameworks (MOFs) incorporate metal oxide clusters as nodes. Node sites where linkers are missing can be catalytic sites. We now show how to dial in the number and occupancy of such sites in MIL-53 and MIL-68, which incorporate aluminum-oxide-like nodes. The methods involve modulators used in synthesis and postsynthesis reactions to control the modulator-derived groups on these sites. We illustrate the methods using formic acid as a modulator, giving formate ligands on the sites, and these can be removed to leave μ2-OH groups and open Lewis acid sites. Methanol dehydration was used as a catalytic reaction to probe these sites, with infrared spectra giving evidence of methoxide ligands as reaction intermediates. Control of node surface chemistry opens the door for placement of a variety of ligands on a wide range of metal oxide cluster nodes for dialing in reactivity and catalytic properties of a potentially immense class of structurally well-defined materials.
  •  
33.
  • Wu, Cuiyan, et al. (författare)
  • Long noncoding RNA expression profile reveals lncRNAs signature associated with extracellular matrix degradation in kashin-beck disease
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Kashin-Beck disease (KBD) is a deformative, endemic osteochondropathy involving degeneration and necrosis of growth plates and articular cartilage. The pathogenesis of KBD is related to gene expression and regulation mechanisms, but long noncoding RNAs (lncRNAs) in KBD have not been investigated. In this study, we identified 316 up-regulated and 631 down-regulated lncRNAs (≥ 2-fold change) in KBD chondrocytes using microarray analysis, of which more than three-quarters were intergenic lncRNAs and antisense lncRNAs. We also identified 232 up-regulated and 427 down-regulated mRNAs (≥ 2-fold change). A lncRNA-mRNA correlation analysis combined 343 lncRNAs and 292 mRNAs to form 509 coding-noncoding gene co-expression networks (CNC networks). Eleven lncRNAs were predicted to have cis-regulated target genes, including NAV2 (neuron navigator 2), TOX (thymocyte selection-associated high mobility group box), LAMA4 (laminin, alpha 4), and DEPTOR (DEP domain containing mTOR-interacting protein). The differentially expressed mRNAs in KBD significantly contribute to biological events associated with the extracellular matrix. Meanwhile, 34 mRNAs and 55 co-expressed lncRNAs constituted a network that influences the extracellular matrix. In the network, FBLN1 and LAMA 4 were the core genes with the highest significance. These novel findings indicate that lncRNAs may play a role in extracellular matrix destruction in KBD.
  •  
34.
  • Yang, Lei, et al. (författare)
  • Gene expression profiles and molecular mechanism of cultured human chondrocytes' exposure to T-2 toxin and deoxynivalenol
  • 2017
  • Ingår i: Toxicon. - Amsterdam : Elsevier. - 0041-0101 .- 1879-3150. ; 140, s. 38-44
  • Tidskriftsartikel (refereegranskat)abstract
    • T-2 toxin and deoxynivalenol (DON) are secondary metabolites produced by Fusarium fungi and are commonly found on food and feed. Although T-2 toxin and DON have been suggested as the etiology of Kashin-Beck disease (KBD), an endemic osteochondropathy, little is known about the mechanism when human chondrocytes are exposed to T-2 toxin and DON. The purpose of this study is to identify the gene expression differences and underlying molecular changes modulated by T-2 toxin and DON in vitro in human chondrocytes. After the experiments of cell viability, the gene expression profiles were analyzed in cells that were treated with 0.01 μg/ml T-2 toxin and 1.0 μg/ml DON for 72 h by Affymetrix Human Gene Chip. The array results showed that 882 and 2118 genes were differentially expressed for T-2 toxin and DON exposure, respectively. Enrichment analysis revealed that diverse cellular processes including DNA damage, cell cycle regulation and metabolism of extracellular matrix were affected when human chondrocytes were exposed to T-2 toxin and DON. These results demonstrate the gene expression differences and molecular mechanism of cultured human chondrocytes exposure to T-2 toxin and DON, and provide a new insight into future research in the etiology of KBD.
  •  
35.
  • Zhou, Yao, et al. (författare)
  • Enabling High-Performance Polypropylene Nanocomposites With Interfacial Deep Traps
  • 2023
  • Ingår i: IEEE Transactions on Dielectrics and Electrical Insulation. - 1558-4135 .- 1070-9878. ; 30:1, s. 484-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer nanocomposites are the material of choice for dc insulation. The emerging demand for high-capacity high voltage direct current (HVdc) power transmission requires polymer nanocomposites capable of safe and stable operation at high temperatures. However, the high-temperature electrical properties of current polymer nanocomposites are still unsatisfactory. Here, we report that the modulation of polymer/nanoparticle interfaces can greatly improve the high-temperature insulation properties of polypropylene (PP)-based nanocomposite for recyclable HVdc cable insulation application. The nanoparticles are surface-modified with PP-graft-maleic anhydride (PP- g -mah), which is not only well miscible with PP but also contains polar groups to act as interfacial deep traps. We demonstrate that the interfacial deep traps can improve the dc breakdown strength and the electrical resistivity of polymer nanocomposite by inhibiting the charge injection. This work deepens the understanding of interfacial effects in polymer nanocomposites and provides new opportunities for designing high-performance recyclable insulation materials for HVdc cables.
  •  
36.
  • Zhou, Yao, et al. (författare)
  • Insight Into Space Charge Suppression by Interfacial Deep Traps in Polymer Nanocomposites
  • 2022
  • Ingår i: IEEE Transactions on Dielectrics and Electrical Insulation. - 1558-4135 .- 1070-9878. ; 29:6, s. 2402-2404
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer nanocomposites are attractive for HVDC insulation applications, especially for HVDC cables, due to their ability to suppress space charge accumulation through interfacial effects. However, direct evidence to support the existence of interfacial effects at the nanoscale is still lacking. Therefore, rational design and molecular engineering of the interfaces to improve the insulation properties of polymer nanocomposites remain unavailable. Here, we show that efficient space charge suppression can be achieved in polymer nanocomposites at temperatures up to 100 °C by introducing local deep traps through carefully designed nanoparticle/polymer interfaces. The local interfacial deep traps are directly detected at the nanoscale using intermodulation electrostatic force microscopy (ImEFM). This work provides a deep understanding of the interfacial effects in polymer nanocomposites and will enable the rational design of interfaces for high-performance insulation materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36
Typ av publikation
tidskriftsartikel (33)
annan publikation (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (35)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lammi, Mikko, 1961- (12)
Wang, Xi (11)
Zhang, Feng (6)
Li, Cheng (4)
Willett, Walter C. (3)
North, Kari E. (3)
visa fler...
Franks, Paul W. (3)
Ridker, Paul M. (3)
Chasman, Daniel I. (3)
Rose, Lynda M (3)
Rotter, Jerome I. (3)
Lehtimaki, Terho (3)
Rich, Stephen S (3)
Uitterlinden, André ... (3)
Psaty, Bruce M (3)
Franco, Oscar H. (3)
Lemaitre, Rozenn N. (3)
Yang, Lei (3)
Overvad, Kim (2)
Wang, Kai (2)
Wang, Xin (2)
Serdyuk, Yuriy, 1963 (2)
Viikari, Jorma (2)
Nordestgaard, Borge ... (2)
Crespo, Gaston A., 1 ... (2)
Mozaffarian, Dariush (2)
Johansson, Ingegerd (2)
Hernandez, Dena (2)
Tjonneland, Anne (2)
Wang, Ying (2)
Schulz, Christina Al ... (2)
Linneberg, Allan (2)
Pedersen, Oluf (2)
Orho-Melander, Marju (2)
Hansen, Torben (2)
Renström, Frida (2)
Hu, Frank B. (2)
Chu, Audrey Y (2)
Qi, Lu (2)
Smith, Caren E. (2)
Wang, Wei (2)
Barroso, Ines (2)
Sonestedt, Emily (2)
Voortman, Trudy (2)
Sorensen, Thorkild I ... (2)
Hofman, Albert (2)
Pennell, Craig E (2)
Siscovick, David S. (2)
Ordovás, José M. (2)
Xu, Xiangdong, 1984 (2)
visa färre...
Lärosäte
Umeå universitet (20)
Chalmers tekniska högskola (8)
Lunds universitet (5)
Kungliga Tekniska Högskolan (4)
Uppsala universitet (2)
Linköpings universitet (2)
visa fler...
Karolinska Institutet (2)
Stockholms universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (17)
Teknik (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy