SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Zhiwen) "

Sökning: WFRF:(Wang Zhiwen)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • You, Xiaohu, et al. (författare)
  • Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts
  • 2021
  • Ingår i: Science China Information Sciences. - : Science Press. - 1674-733X .- 1869-1919. ; 64:1
  • Forskningsöversikt (refereegranskat)abstract
    • The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
  •  
2.
  • Huang, Hongyun, et al. (författare)
  • Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)
  • 2018
  • Ingår i: Cell Transplantation. - : SAGE Publications. - 0963-6897 .- 1555-3892. ; 27:2, s. 310-324
  • Forskningsöversikt (refereegranskat)abstract
    • Cell therapy has been shown to be a key clinical therapeutic option for central nervous system diseases or damage. Standardization of clinical cell therapy procedures is an important task for professional associations devoted to cell therapy. The Chinese Branch of the International Association of Neurorestoratology (IANR) completed the first set of guidelines governing the clinical application of neurorestoration in 2011. The IANR and the Chinese Association of Neurorestoratology (CANR) collaborated to propose the current version "Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)". The IANR council board members and CANR committee members approved this proposal on September 1, 2016, and recommend it to clinical practitioners of cellular therapy. These guidelines include items of cell type nomenclature, cell quality control, minimal suggested cell doses, patient-informed consent, indications for undergoing cell therapy, contraindications for undergoing cell therapy, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, do not charge patients for unproven therapies, basic principles of cell therapy, and publishing responsibility.
  •  
3.
  • Huang, Shoushuang, et al. (författare)
  • ZIF-assisted construction of magnetic multiple core-shell Fe3O4@ZnO@N-doped carbon composites for effective photocatalysis
  • 2019
  • Ingår i: Chemical Engineering Science. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0009-2509 .- 1873-4405. ; 209
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic Fe3O4@ZnO@nitrogen-doped carbon (Fe3O4@ZnO@N-C) composites with multiple core-shell structures have been successfully synthesized by calcination of ZIF-8 coated Fe3O4@ZnO core-shell nanocrystals. The morphologies and microstructural characteristics are investigated by X-ray diffraction, Fourier-transform infrared spectrometer, transmission electron microscopy, X-ray photoelectron spectroscopy, physical adsorption of nitrogen, and UV-vis diffuse reflectance spectroscopy. The photocatalytic performances are tested by degrading methylene blue (MB) in aqueous solutions under the irradiation of imitative sunlight. The photocatalytic trials indicate that the Fe3O4@ZnO@N-C composites exhibit improved degradation efficiency compared to the Fe3O4@ZnO precursor. The photocatalytic efficiencies of the as-prepared Fe3O4@ZnO@N-C composites towards MB are 93% under irradiation of imitative sunlight for 90 min and still maintained to be 87% after 6 recycles, which shows very good stability and recyclability. Nitrogen-doped carbon is believed to extend the absorption spectra to the visible-light region. The photodegradation kinetics via using the as-prepared Fe3O4@ZnO@N-C composite as a novel photocatalyst are systematically investigated. (C) 2019 Elsevier Ltd. All rights reserved.
  •  
4.
  • Jia, Xue, et al. (författare)
  • CsPb(IxBr1-x)(3) solar cells
  • 2019
  • Ingår i: Science Bulletin. - : ELSEVIER. - 2095-9273. ; 64:20, s. 1532-1539
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to its nice performance, low cost, and simple solution-processing, organic-inorganic hybrid perovskite solar cell (PSC) becomes a promising candidate for next-generation high-efficiency solar cells. The power conversion efficiency (PCE) has boosted from 3.8% to 25.2% over the past ten years. Despite the rapid progress in PCE, the device stability is a key issue that impedes the commercialization of PSCs. Recently, all-inorganic cesium lead halide perovskites have attracted much attention due to their better stability compared with their organic-inorganic counterpart. In this progress report, we summarize the properties of CsPb(IxBr1-x)(3) and their applications in solar cells. The current challenges and corresponding solutions are discussed. Finally, we share our perspectives on CsPb(IxBr1-x)(3) solar cells and outline possible directions to further improve the device performance. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
  •  
5.
  • Le, Thanh-Tung, et al. (författare)
  • Carbon-Decorated Fe3S4-Fe7Se8 Hetero-Nanowires: Interfacial Engineering for Bifunctional Electrocatalysis Toward Hydrogen and Oxygen Evolution Reactions
  • 2020
  • Ingår i: Journal of the Electrochemical Society. - : ELECTROCHEMICAL SOC INC. - 0013-4651 .- 1945-7111. ; 167:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and synthesis of complex multi-component heterostructures is an effective strategy to fabricate cost-efficient catalysts for electrochemical water splitting. Herein, one-dimensional porous Fe3S4-Fe7Se8 heterostructured nanowires confined in carbon (Fe3S4-Fe7Se8@C) were synthesized via the selenization of Fe-based organic-inorganic nanowires. Benefiting from the merits of morphology, composition and surface structure characteristics, i.e., the high structural void porosity, the direct electrical pathways of nanowire topology and the conductive carbon layer coating, the titled catalyst not only offered a larger accessible electrocatalytic interface but also facilitated diffusion of the electrolyte and gas. Moreover, the electron redistribution at the Fe3S4-Fe7Se8 heterojunction interfaces reduced the adsorption free-energy barriers on the active sites, endowing the catalysts with faster reaction kinetics and improved electrocatalytic activity. Accordingly, the optimal Fe3S4-Fe7Se8@C produced a low hydrogen evolution reaction overpotential of 124 mV at 10 mA cm (-2) with a Tafel slope of 111.2 mV dec(-1), and an ultralow oxygen evolution reactions overpotential of 219 mV at 20 mA cm (-2 ), respectively. When applied as both anode and cathode for overall water splitting, a low battery voltage of 1.67 V was achieved along with excellent stability for at least 12 h. The work presented here offered a feasible scheme to fabricate non-noble metal-based electrocatalysts for water splitting. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  •  
6.
  • Li, Yadi, et al. (författare)
  • Virtual and In vitro bioassay screening of phytochemical inhibitors from flavonoids and isoflavones against Xanthine oxidase and Cyclooxygenase-2 for gout treatment
  • 2013
  • Ingår i: Chemical Biology and Drug Design. - : John Wiley & Sons. - 1747-0277 .- 1747-0285. ; 81:4, s. 537-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic drugs such as allopurinol and benzbroarone are commonly used to treat the complex pathogenesis of gout, a metabolic disease that results from an inflammation of the joints caused by precipitation of uric acid. We seek to discover novel phytochemicals that could treat gout, by targeting the xanthine oxidase (XO) and cyclooxygenase 2 (COX-2) enzymes. In this study, we report the screening of 9 compounds of flavonoids from the ZINC and PubChem databases (containing 2,092 flavonoids) using the iGEMDOCK software tool against the XO and COX-2 3D protein structures. Each compound was also evaluated by an in vitro bioassay testing the inhibition of XO and COX-2. Myricetin and luteolin were found to be the potential dual inhibitors of XO and COX-2 as demonstrated by IC50: 62.7 and 3.29μg/mL (XO) / 70.8 and 16.38μg/mL (COX-2), respectively. In addition, structure activity relationships and other important factors of the flavonoids binding to the active site of XO and COX-2 were discussed, which is expected for further rational drug design.
  •  
7.
  • Wang, Shangdai, et al. (författare)
  • Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries
  • 2019
  • Ingår i: Journal of Power Sources. - : ELSEVIER. - 0378-7753 .- 1873-2755. ; 436
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of cost-effective, highly efficient and robust multi-functional electrode materials can dramatically reduce the overall cost of electrochemical devices. We here report the controlled synthesis of NiS2/FeS2 nanoparticles encapsulated in N-doped carbon nanorods (NiS2/FeS2/NC) through carbonization and sulfurization of Fe/Ni-based bimetallic metal-organic frameworks. Benefiting from both structural and compositional characteristics, the resulting NiS2/FeS2/NC nanorods possess abundant active sites, high electrical conductivity and rapid mass transfer, thereby delivering 10 and 20 mA cm(-2) at overpotential of 172 mV and 231 mV towards the hydrogen evolution reaction and oxygen evolution reaction with robust stability in 1.0 M KOH solution, respectively. When employed as a bifunctional electrocatalyst for overall water splitting, it requires only 1.58 V to deliver a current density of 10 mA cm(-2) in 1.0 M KOH, outperforming that of the commercial Pt/C parallel to RuO2. Additionally, lithium-ion batteries tests also show high reversible capacity (718 mA h g(-1) at 100 mA g(-1)) and excellent cycling stability and rate performance. The work in this paper not only provides a promising strategy for designing efficient multi-functional electrode materials with similar morphology and structure, but also can be extended to the synthesis of other mixed metal sulfides for energy conversion and storage.
  •  
8.
  • Bi, Shubo, et al. (författare)
  • Influence of no-core fiber on the focusing performance of an ultra-small gradient-index fiber probe
  • 2018
  • Ingår i: Optics and lasers in engineering. - : ELSEVIER SCI LTD. - 0143-8166 .- 1873-0302. ; 107, s. 46-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-beam expansion effect of a no-core fiber on the focusing performance of an ultra-small gradient-index fiber probe is investigated with a view to optimizing the optical performance of such probes. By taking the variable relationship between the focusing performance (including the working distance and the focusing spot size) of the probe and the length of the no-core fiber as the criterion, the effective beam expansion length of the no-core fiber in the ultra-small gradient-index fiber probe is calculated based on the basic properties of the Gaussian beam. Verification and analysis are done by numerical calculations and experimental measurements, respectively. The obtained results show that the working distance of an ultra-small gradient-index fiber probe can be increased effectively by adding a no-core fiber; however, this will lead to increasing the focusing spot size. For the parameters of the fiber probe studied here, the effective beam expansion length of the no-core fiber spacer is less than 0.357 mm. (C) 2018 Elsevier Ltd. All rights reserved.
  •  
9.
  • Chen, Zhiwen, et al. (författare)
  • Interface engineering of NiS@MoS2 core-shell microspheres as an efficient catalyst for hydrogen evolution reaction in both acidic and alkaline medium
  • 2021
  • Ingår i: Journal of Alloys and Compounds. - : ELSEVIER SCIENCE SA. - 0925-8388 .- 1873-4669. ; 853
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical splitting of water is one of the most reliable and effective ways for the sustainable production of pure hydrogen on a large scale, while the core of this technology lies in the development of highly active non-noble-metal-based electrocatalysts to lower the large dynamic overpotentials of electrode materials. Here, an interface engineering strategy is demonstrated to construct an efficient and stable catalyst based on NiS@MoS2 core-shell hierarchical microspheres for the hydrogen evolution reactions (HER). The ultrathin MoS2 nanosheets in-situ grow on the surface of NiS hierarchical micro-sized spheres constructed by porous nanoplates, endowing the composites with rich interfaces, well-exposed electroactive edges, high structural porosity and fast transport channels. These advantages are favorable for the improvement of catalytic sites and the transport of catalysis-relevant species. More importantly, the intimate contact between MoS2 nanosheets and NiS nanoplates synergistically favors the chemical sorption of hydrogen intermediates, thereby reducing the reaction barrier and accelerating the HER catalytic process. As a result, the optimized NiS@MoS2 catalyst manifests impressive HER activity and durability, with a low overpotential of 208 mV in 0.5 M H2SO4 and 146 mV in 1.0 M KOH at 10 mA cm(-2), respectively. This work not only provides an effective way to construct core-shell hierarchical microspheres but also a multiscale strategy to regulate the electronic structure of heterostructured materials for energy-related applications. (C) 2020 Elsevier B.V. All rights reserved.
  •  
10.
  • Chen, Zhiwen, et al. (författare)
  • Well-defined CoSe2@MoSe2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting
  • 2020
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 12:1, s. 326-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Hollow heterostructures have tremendous advantages in electrochemical energy storage and conversion areas due to their unique structure and composition characteristics. Here, we report the controlled synthesis of hollow CoSe2 nanocubes decorated with ultrathin MoSe2 nanosheets (CoSe2@MoSe2) as an efficient and robust bifunctional electrocatalyst for overall water splitting in a wide pH range. It is found that integrating ultrathin MoS2 nanosheets with hollow CoSe2 nanocubes can provide abundant active sites, promote electron/mass transfer and bubble release and facilitate the migration of charge carriers. Additionally, the surface electron coupling in the heterostructures enables it to serve as a source of sites for H+ and/or OH- adsorption, thus reducing the activation barrier for water molecules adsorption and dissociation. As a result, the title compound, CoSe2@MoSe2 hollow heterostructures, exhibits an overpotential of 183 mV and 309 mV at a current density of 10 mA cm(-2) toward hydrogen evolution reactions and oxygen evolution reactions in 1.0 M KOH, respectively. When applied as both cathode and anode for overall water splitting, a low battery voltage of 1.524 V is achieved along with excellent stability for at least 12 h. This work provides a new idea for the design and synthesis of high-performance catalysts for electrochemical energy storage and conversion.
  •  
11.
  • Cheng, Erbo, et al. (författare)
  • Porous ZnO/Co3O4/N-doped carbon nanocages synthesized via pyrolysis of complex metal-organic framework (MOF) hybrids as an advanced lithium-ion battery anode
  • 2019
  • Ingår i: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY. - : INT UNION CRYSTALLOGRAPHY. - 2053-2296. ; 75, s. 969-978
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal oxides have a large storage capacity when employed as anode materials for lithium-ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge-discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO-Co3O4 nanocomposites embedded in N-doped carbon (ZnO-Co3O4@N-C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal-organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N-doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as-prepared ZnO-Co3O4@N-C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO-Co3O4@N-C shows a discharge capacity of 2373 mAh g(-1) at the first cycle and exhibits a retention capacity of 1305 mAh g(-1) even after 300 cycles at 0.1 A g(-1). In addition, a reversible capacity of 948 mAh g(-1) is obtained at a current density of 2 A g(-1), which delivers an excellent high-rate cycle ability.
  •  
12.
  • Ding, Lianghui, et al. (författare)
  • Energy minimization in wireless multihop networks using two-way network coding
  • 2011
  • Ingår i: IEEE 73rd Vehicular Technology Conference (VTC-2011-Spring), Budapest, Ungern. - 9781424483310
  • Konferensbidrag (refereegranskat)abstract
    • The total energy minimization in wireless multihop networks using two-way network coding is investigated in this paper. The problem is first formulated as a linear programming problem, then decomposed into two sub-problems using the Lagrangian decomposition, and finally solved with the subgradient method. After that, the backpressure based algorithm is proposed to solve the problem in a distributed manner. The performance of the algorithm is evaluated first in a simple topology for analysis and then in a random topology with different number of flows for practical consideration. Simulation results show that the convergence time increases as the number of nodes in the network, and the energy cost per packet can be saved up to 30% by using two-way network coding.
  •  
13.
  •  
14.
  • Ding, Liang-Hui, et al. (författare)
  • Lifetime maximization routing with network coding in wireless multihop networks
  • 2013
  • Ingår i: SCIENCE CHINA-INFORMATION SCIENCES. - : Springer Science and Business Media LLC. - 1674-733X .- 1869-1919. ; 56:2, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we consider the lifetime maximization routing with network coding in wireless multihop networks. We first show that lifetime maximization with network coding is different from pure routing, throughput maximization with network coding and energy minimization with network coding. Then we formulate lifetime maximization problems in three different cases of (i) no network coding, (ii) two-way network coding, and (iii) overhearing network coding. To solve these problems, we use flow augmenting routing (FA) for the first case, and then extend the FA with network coding (FANC) by using energy minimized one-hop network coding. After that, we investigate the influence of parameters of FANC, evaluate the performance of FANC with two-way and overhearing network coding schemes and compare it with that without network coding under two different power control models, namely, protocol and physical ones. The results show that the lifetime can be improved significantly by using network coding, and the performance gain of network coding decreases with the increase of flow asymmetry and the power control ability.
  •  
15.
  •  
16.
  • Fan, Zhiwen, et al. (författare)
  • Porous Ionic Network/CNT Composite Separator as a Polysulfide Snaring Shield for High Performance Lithium–Sulfur Battery
  • 2023
  • Ingår i: Macromolecular rapid communications. - 1022-1336 .- 1521-3927. ; 44:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium–sulfur (Li–S) battery features a high theoretical energy density, but the shuttle of soluble polysulfides between the two electrodes often results in a rapid capacity decay. Herein, a straightforward electrostatic adsorption strategy based on a cross-linked polyimidazolium separator as a snaring shield of polysulfides is reported, which suppresses the undesirable migration of polysulfides to the anode. The porous ionic network (PIN)-modified carbon nanotubes (CNTs) are successfully prepared and coated onto a commercial porous polypropylene membrane in a vacuum-filtration step. The favorable affinity of the imidazolium ring toward polysulfide via the polar interaction and the electrostatic effect of ions mitigates the undesirable shuttle of polysulfides in the electrolyte, improving the Li─S battery in terms of rate performance and cycling life. Compared to the reference PIN-free CNT-coated separator, the PIN/CNT-coated one has an increased initial capacity of 1.3 folds (up to 1394.8 mAh g−1 for PIN/CNT/PP-3) at 0.1 C. 
  •  
17.
  • Huang, Ruting, et al. (författare)
  • Construction of SnS2-SnO2 heterojunctions decorated on graphene nanosheets with enhanced visible-light photocatalytic performance
  • 2019
  • Ingår i: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY. - : INT UNION CRYSTALLOGRAPHY. - 2053-2296. ; 75, s. 812-821
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterostructures formed by the growth of one kind of nanomaterial in/on another have attracted increasing attention due to their microstructural characteristics and potential applications. In this work, SnS2-SnO2 heterostructures were successfully prepared by a facile hydrothermal method. Due to the enhanced visible-light absorption and efficient separation of photogenerated holes and electrons, the SnS2-SnO2 heterostructures display excellent photocatalytic performance for the degradation of rhodamine (RhB) under visible-light irradiation. Additionally, it is found that the introduction of graphene into the heterostructures further improved photocatalytic activity and stability. In particular, the optimized SnS2-SnO2/graphene photocatalyst can degrade 97.1% of RhB within 60 min, which is about 1.38 times greater than that of SnS2-SnO2 heterostructures. This enhanced photocatalytic activity could be attributed to the high surface area and the excellent electron accepting and transporting properties of graphene, which served as an acceptor of the generated electrons to suppress charge recombination. These results provide a new insight for the design and development of hybrid photocatalysts.
  •  
18.
  • Huang, Shoushuang, et al. (författare)
  • An advanced electrocatalyst for efficient synthesis of ammonia based on chemically coupled NiS@MoS2 heterostructured nanospheres
  • 2021
  • Ingår i: Sustainable Energy & Fuels. - : Royal Society of Chemistry. - 2398-4902. ; 5:10, s. 2640-2648
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrochemical reduction of nitrogen, as a sustainable alternative to the known Haber-Bosch process, possesses promising application prospects in the development of renewable energy storage systems. However, the yield of NH3 and Faraday efficiency are usually very low owing to the loss of active electrocatalysts and competitive hydrogen evolution reactions. Herein, uniform NiS@MoS2 core-shell microspheres are controllably prepared as a potential catalyst for an ambient electrocatalytic N-2 reduction reaction. The NiS@MoS2 microspheres possess highly active intrinsic, sufficient accessible active sites, high structural porosity, and convenient transport channels, consequently boosting the transmission of electrons and mass. Additionally, the interfacial interaction between NiS and MoS2 facilitates electron transfer, which further improves the catalytic activity by optimizing the free energies of reaction intermediates. As a result, the titled NiS@MoS2 shows excellent electrochemical activity and selectivity, capable of achieving a relatively high NH3 yield of 9.66 mu g h(-1) mg(cat)(-1) at -0.3 V (vs. the reversible hydrogen electrode, RHE) and a high FE of 14.8% at -0.1 V vs. RHE in 0.1 M Na2SO4. The work demonstrated here may open a new avenue for the rational design and synthesis of catalysts for the electrochemical synthesis of ammonia.
  •  
19.
  • Huang, Zhiwen, et al. (författare)
  • Cross-domain tool wear condition monitoring via residual attention hybrid adaptation network
  • 2024
  • Ingår i: Journal of manufacturing systems. - : Elsevier BV. - 0278-6125 .- 1878-6642. ; 72, s. 406-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Intelligent models for tool wear condition monitoring (TWCM) have been extensively researched. However, in industrial scenarios, limited acquired monitoring signals and variations of machining parameters lead to insufficient training samples and data distribution shifts for the models. To address the issues, this research presents a novel residual attention hybrid adaptation network (RAHAN) model based on a residual attention network (ResAttNet) and a hybrid adaptation strategy. In the RAHAN model, by integrating a channel attention mechanism and deep residual modules, ResAttNet is designed as a feature extractor to acquire features from monitoring signals for tool wear conditions. Embedding subdomain adaptation into a condition recognizer while establishing separate adversarial learning in a domain obfuscator, the hybrid adaptation strategy is developed to eliminate global distribution shifts and align local distributions of each tool wear phase simultaneously. Six migration tasks under a laboratory and two factory machining platforms were conducted to evaluate the effectiveness of the RAHAN model. Compared with a baseline model, four ablation models, and six state-of-the-art transfer learning models, the RAHAN model achieved the highest average accuracy of 92.70% on six migration tasks. Furthermore, the RAHAN model shows clearer feature representations of each tool wear condition than other compared models. The comparative results demonstrate that the RAHAN model has superior transferability and therefore can be considered as a good potential solution to support cross-domain TWCM under different machining processes.
  •  
20.
  • Kou, Mengyun, et al. (författare)
  • Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol
  • 2022
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: 2,3-butanediol is an important platform compound which has a wide range of applications, involving in medicine, chemical industry, food and other fields. Especially the optically pure (2R,3R)-2,3-butanediol can be employed as an antifreeze agent and as the precursor for producing chiral compounds. However, some (2R,3R)-2,3-butanediol overproducing strains are pathogenic such as Enterobacter cloacae and Klebsiella oxytoca. Results: In this study, a (3R)-acetoin overproducing C. glutamicum strain, CGS9, was engineered to produce optically pure (2R,3R)-2,3-butanediol efficiently. Firstly, the gene bdhA from B. subtilis 168 was integrated into strain CGS9 and its expression level was further enhanced by using a strong promoter Psod and ribosome binding site (RBS) with high translation initiation rate, and the (2R,3R)-2,3-butanediol titer of the resulting strain was increased by 33.9%. Then the transhydrogenase gene udhA from E. coli was expressed to provide more NADH for 2,3-butanediol synthesis, which reduced the accumulation of the main byproduct acetoin by 57.2%. Next, a mutant atpG was integrated into strain CGK3, which increased the glucose consumption rate by 10.5% and the 2,3-butanediol productivity by 10.9% in shake-flask fermentation. Through fermentation engineering, the most promising strain CGK4 produced a titer of 144.9 g/L (2R,3R)-2,3-butanediol with a yield of 0.429 g/g glucose and a productivity of 1.10 g/L/h in fed-batch fermentation. The optical purity of the resulting (2R,3R)-2,3-butanediol surpassed 98%. Conclusions: To the best of our knowledge, this is the highest titer of optically pure (2R,3R)-2,3-butanediol achieved by GRAS strains, and the result has demonstrated that C. glutamicum is a competitive candidate for (2R,3R)-2,3-butanediol production.
  •  
21.
  • Le, Thanh-Tung, et al. (författare)
  • Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites
  • 2021
  • Ingår i: Journal of Materials Science & Technology. - : JOURNAL MATER SCI TECHNOL. - 1005-0302. ; 74, s. 168-175
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing low-cost, efficient, and stable non-precious-metal electrocatalysts with controlled crystal structure, morphology and compositions are highly desirable for hydrogen and oxygen evolution reactions. Herein, a series of phosphorus-doped Fe7S8 nanowires integrated within carbon (P-Fe7S8@C) are rationally synthesized via a one-step phosphorization of one-dimensional (1D) Fe-based organic-inorganic nanowires. The as-obtained P-Fe7S8@C catalysts with modified electronic configurations present typical porous structure, providing plentiful active sites for rapid reaction kinetics. Density functional calculations demonstrate that the doping Fe7S8 with P can effectively enhance the electron density of Fe7S8 around the Fermi level and weaken the Fe-H bonding, leading to the decrease of adsorption free energy barrier on active sites. As a result, the optimal catalyst of P-Fe7S8-600@C exhibits a relatively low overpotential of 136 mV for hydrogen evolution reaction (HER) to reach the current density of 10 mA/cm(2), and a significantly low overpotential of 210 mV for oxygen evolution reaction (OER) at 20 mA/cm(2) in alkaline media. The work presented here may pave the way to design and synthesis of other prominent Fe-based catalysts for water splitting via electronic regulation. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
  •  
22.
  • Pang, Zhili, et al. (författare)
  • Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph
  • 2015
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 15:17, s. 2972-2982
  • Tidskriftsartikel (refereegranskat)abstract
    • Pyrimorph is a novel fungicide from the carboxylic acid amide (CAA) family used to control plant-pathogenic oomycetes such as Phytophthora capsici. The proteomic response of P. capsici to pyrimorph was investigated using the iTRAQ technology to determine the target site of the fungicide and potential biomarker candidates of drug efficacy. A total of 1336 unique proteins were identified from the mycelium of wild-type P. capsici isolate (Hd3) and two pyrimorphresistantmutants (R3-1 and R3-2) grown in the presence or absence of pyrimorph. Comparative analysis revealed that the three P. capsici isolates Hd3, R3-1, and R3-2 produced 163, 77, and 13 unique proteins, respectively, which exhibited altered levels of abundance in response to the pyrimorph treatment. Further investigations, using Cluster of Orthologous Groups of Proteins (COG) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 35 proteins related to the mode of action of pyrimorph against P. capsici and 62 proteins involved in the stress response of P. capsici to pyrimorph. Many of the proteins with altered expression were associated with glucose and energy metabolism. Biochemical analysis using D-[U-C-14] glucose verified the proteomics data, suggesting that the major mode of action of pyrimorph in P. capsici is the inhibition of cell wall biosynthesis. These results also illustrate that proteomics approaches are useful tools for determining the pathways targeted by novel fungicides as well as for evaluating the tolerance of plant pathogens to environmental challenges, such as the presence of fungicides.
  •  
23.
  • Song, Luying, et al. (författare)
  • Intra- and Inter-Self-Assembly of Identical Supramolecules on Silver Surfaces
  • 2022
  • Ingår i: The Journal of Physical Chemistry Letters. - : AMER CHEMICAL SOC. - 1948-7185. ; 13:38, s. 8902-8907
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembly of identical organometallic supra -molecules into ordered superstructures is of great interest in both chemical science and nanotechnology due to its potential to generate neoteric properties through collective effects. In this work, we demonstrate that large-scale self-organization of atomically precise organometallic supramolecules can be achieved through cascaded on-surface chemical reactions, by the combination of intra-and inter-supramolecular interactions. Supramolecules with defined size and shape are first built through intramolecular reaction and intermolecular metal coordination, followed by the formation of well-ordered two-dimensional arrays with the assistance of Br atoms by-C-HmiddotmiddotmiddotBr interactions. The mechanism of this process has been investigated from the perspectives of thermodynamics and kinetics.
  •  
24.
  • Wang, Hao, et al. (författare)
  • A unified algorithm for mobility load balancing in 3GPP LTE multi-cell networks
  • 2013
  • Ingår i: Science in China. Series F, Information Sciences. - : Science China Press. - 1009-2757. ; 56
  • Tidskriftsartikel (refereegranskat)abstract
    • 3GPP long term evolution (LTE) is a promising candidate for the next-generation wireless network, which is expected to achieve high spectrum efficiency by using advanced physical layer techniques and flat network structures. However, the LTE network still faces the problem of load imbalance as in GSM/WCDMA networks, and this may cause significant deterioration of system performance. To deal with this problem, mobility load balancing (MLB) has been proposed as an important use case in 3GPP self-organizing network (SON), in which the serving cell of a user can be selected to achieve load balancing rather than act as the cell with the maximum received power. Furthermore, the LTE network aims to serve users with different quality-of-service (QoS) requirements, and the network-wide objective function for load balancing is distinct for different kinds of users. Thus, in this paper, a unified algorithm is proposed for MLB in the LTE network. The load balancing problem is first formulated as an optimization problem with the optimizing variables being cell-user connections. Then the complexity and overhead of the optimal solution is analyzed and a practical and distributed algorithm is given. After that, the proposed algorithm is evaluated for users with different kinds of QoS requirements, i.e., guaranteed bit rate (GBR) users with the objective function of load balance index and non-GBR (nGBR) users with the objective function of total utility, respectively. Simulation results show that the proposed algorithm leads to significantly balanced load distribution for GBR users to decrease the new call blocking rate, and for nGBR users to improve the cell-edge throughput at the cost of only slight deterioration of total throughput.
  •  
25.
  •  
26.
  •  
27.
  • Wang, Hao, et al. (författare)
  • Minimum rate guaranteed call admission control for cumulative rate distribution based scheduling
  • 2011
  • Ingår i: IEEE Communications Letters. - 1089-7798 .- 1558-2558. ; 15:11, s. 1181-1183
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, we investigate call admission control (CAC) for cumulative rate distribution based scheduling (CS) in wireless communication networks. We first analyze the multi-user diversity gain (MDG) of CS, which is applicable to general channel conditions. Then we propose the minimum rate guaranteed CS/ORR based CAC algorithm, COCAC, which jointly uses CS and opportunistic round robin (ORR) for resource prediction and CAC decision. Furthermore, we evaluate the performance of our COCAC algorithm through simulation. Results show that COCAC can significantly reduce the new call blocking rate, while strictly guarantee the minimum rate requirements of all serving users.
  •  
28.
  •  
29.
  • Wang, Hao, et al. (författare)
  • Three novel opportunistic scheduling algorithms in CoMP-CSB scenario
  • 2013
  • Ingår i: Science China-Information Sciences. - : Springer Science and Business Media LLC. - 1674-733X .- 1869-1919. ; 56:8, s. 082301-
  • Tidskriftsartikel (refereegranskat)abstract
    • Coordinated scheduling/beamforming (CSB), which belongs to the coordinated multi-point (CoMP) transmission, has received lots of attention recently due to its great potential to mitigate inter-cell interference (ICI) and to increase the cell-edge throughput, and meanwhile it only requires limited base station cooperation and is easy to implement. However, to the best of our knowledge, there are no effective scheduling algorithms with low complexity and overhead in CoMP-CSB scenario as yet. Thus, in this paper, we propose three novel opportunistic scheduling algorithms in CoMP-CSB scenario. All of them jointly consider the intended channel condition of the scheduled user from its serving cell and the orthogonality between the intended channel and the corresponding interference channels to concurrently scheduled users in nearby cells, thus exploiting multi-user diversity (MUD) and mitigating ICI at the same time. Algorithm 1 cooperatively chooses the most orthogonal user pair within a candidate user set in which all users have a large local channel feedback, while Algorithm 2 concurrently schedules the user pair with the largest ratio between the local channel feedbacks and the aforementioned orthogonality within the same candidate user set. Algorithm 3 performs in the way similar to the proportional fairness scheduling, while making a proper modification for its usage in CoMP-CSB scenario. The performance of the proposed scheduling algorithms are evaluated through simulation. Results show that, they all can significantly enhance the received signal to interference plus noise ratio (SINR) with relatively good fairness guarantee, thus achieving larger throughputs and utilities than several well-known scheduling algorithms. Algorithm 2 even outperforms Algorithm 1 when the aforementioned candidate user set is big enough in size and has a bit more overhead/complexity. Furthermore, Algorithms 3 is the best one among all the three proposed algorithms, but it requires more overhead/complexity than Algorithm 1 and 2. Finally, we give the optimal parameter for all of the three proposed algorithms, which can make a good tradeoff between performance and overhead/complexity.
  •  
30.
  • Wang, Xin, et al. (författare)
  • MoS2 nanosheets inlaid in 3D fibrous N-doped carbon spheres for lithium-ion batteries and electrocatalytic hydrogen evolution reaction
  • 2019
  • Ingår i: Carbon. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0008-6223 .- 1873-3891. ; 150, s. 363-370
  • Tidskriftsartikel (refereegranskat)abstract
    • Molybdenum disulfide (MoS2) has received considerable interests in rechargeable lithium-ion batteries (LIBs) and hydrogen evolution reaction (HER). To overcome the instinct limitations of pristine MoS2, such as low conductivity, poor cyclic stability and rate performance, hybrid carbon-MoS2 composites are often practically applied to improve the electrochemical properties. Herein, a facile, scalable, and durable synthesis method is innovated to inlay MoS2 nanosheets into three-dimensional (3D) fibrous nitrogen-doped carbon spheres (FNCs) for achieving 3D FNC-MoS2 composites. The free-standing 3D FNC-MoS2 nanocomposites can be used as the anode for LIBs. It exhibits a high reversible capacity of similar to 700 mA h g(-1), and nearly no fading of the capacity nearly after 400 cycles at a current density of 1.2 A g(-1). Meanwhile, FNC-MoS2 exhibits superior HER activity accompanied by a small overpotential of around 194 mV in 0.5 M H2SO4. Tafel slopes are estimated to be 54 mV dec(-1), and the current density of FNC-MoS2 decreases very slightly compared to the initial one after 1000 cycles. We are convinced that the enhanced Li+ storage performance and HER activity are attributed to the synergistic effects and structural advantages, such as higher specific surface, larger pore volume, radical fibrous structure, and chemical/mechanical stability, achieved from the unique architectures of the title material. (C) 2019 Elsevier Ltd. All rights reserved.
  •  
31.
  • Zhang, Hong, et al. (författare)
  • Multimodal host-guest complexation for efficient and stable perovskite photovoltaics
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Formamidinium lead iodide perovskites are promising light-harvesting materials, yet stabilizing them under operating conditions without compromising optimal optoelectronic properties remains challenging. We report a multimodal host-guest complexation strategy to overcome this challenge using a crown ether, dibenzo-21-crown-7, which acts as a vehicle that assembles at the interface and delivers Cs+ ions into the interior while modulating the material. This provides a local gradient of doping at the nanoscale that assists in photoinduced charge separation while passivating surface and bulk defects, stabilizing the perovskite phase through a synergistic effect of the host, guest, and host-guest complex. The resulting solar cells show power conversion efficiencies exceeding 24% and enhanced operational stability, maintaining over 95% of their performance without encapsulation for 500h under continuous operation. Moreover, the host contributes to binding lead ions, reducing their environmental impact. This supramolecular strategy illustrates the broad implications of host-guest chemistry in photovoltaics. It remains a challenge to achieve a balance between performance and stability, as well as addressing the environmental impact of perovskite solar cells. Here, the authors propose a multimodal host-guest complexation strategy enabling these shortcomings to be addressed simultaneously.
  •  
32.
  • Zhang, Jing, et al. (författare)
  • Adaptive Laboratory Evolution of Halomonas bluephagenesis Enhances Acetate Tolerance and Utilization to Produce Poly(3-hydroxybutyrate)
  • 2022
  • Ingår i: Molecules. - : MDPI AG. - 1420-3049 .- 1420-3049. ; 27:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetate is a promising economical and sustainable carbon source for bioproduction, but it is also a known cell-growth inhibitor. In this study, adaptive laboratory evolution (ALE) with acetate as selective pressure was applied to Halomonas bluephagenesis TD1.0, a fast-growing and contamination-resistant halophilic bacterium that naturally accumulates poly(3-hydroxybutyrate) (PHB). After 71 transfers, the evolved strain, B71, was isolated, which not only showed better fitness (in terms of tolerance and utilization rate) to high concentrations of acetate but also produced a higher PHB titer compared with the parental strain TD1.0. Subsequently, overexpression of acetyl-CoA synthetase (ACS) in B71 resulted in a further increase in acetate utilization but a decrease in PHB production. Through whole-genome resequencing, it was speculated that genetic mutations (single-nucleotide variation (SNV) in phaB, mdh, and the upstream of OmpA, and insertion of TolA) in B71 might contribute to its improved acetate adaptability and PHB production. Finally, in a 5 L bioreactor with intermittent feeding of acetic acid, B71 was able to produce 49.79 g/L PHB and 70.01 g/L dry cell mass, which were 147.2% and 82.32% higher than those of TD1.0, respectively. These results highlight that ALE provides a reliable method to harness H. bluephagenesis to metabolize acetate for the production of PHB or other high-value chemicals more efficiently.
  •  
33.
  • Zhang, Jie, et al. (författare)
  • Nested hollow architectures of nitrogen-doped carbon-decorated Fe, Co, Ni-based phosphides for boosting water and urea electrolysis
  • 2022
  • Ingår i: Nano Reseach. - : Tsinghua University Press. - 1998-0124 .- 1998-0000. ; 15, s. 1916-1925
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring the nanostructure/morphology and chemical composition is important to regulate the electronic configuration of electrocatalysts and thus enhance their performance for water and urea electrolysis. Herein, the nitrogen-doped carbon-decorated tricomponent metal phosphides of FeP4 nanotube@Ni-Co-P nanocage (NC-FNCP) with unique nested hollow architectures are fabricated by a self-sacrifice template strategy. Benefiting from the multi-component synergy, the modification of nitrogen-doped carbon, and the modulation of nested porous hollow morphology, NC-FNCP facilitates rapid electron/mass transport in water and urea electrolysis. NC-FNCP-based anode shows low potentials of 248 mV and 1.37 V (vs. reversible hydrogen electrode) to attain 10 mA/cm(2) for oxygen evolution reaction (OER) and urea oxidation reaction (UOR), respectively. In addition, the overall urea electrolysis drives 10 mA/cm(2) at a comparatively low voltage of 1.52 V (vs. RHE) that is 110 mV lower than that of overall water electrolysis, as well as exhibits excellent stability over 20 h. This work strategizes a multi-shell-structured electrocatalyst with multi-compositions and explores its applications in a sustainable combination of hydrogen production and sewage remediation.
  •  
34.
  • Zhang, Qian, et al. (författare)
  • Controlled synthesis of Mn3O4/RGO nanocomposites with enhanced lithium-storage performance
  • 2021
  • Ingår i: Journal of materials science. Materials in electronics. - : SPRINGER. - 0957-4522 .- 1573-482X. ; 32:3, s. 3543-3555
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, Mn3O4 nanocrystals supported by reduced graphene oxide (RGO) nanosheets have been successfully prepared in one step by a facile hydrothermal method. The characterization results show that the well-crystallized Mn3O4 monocrystals are uniformly dispersed on the surface of RGO nanosheets. Further studies indicate that the synergistic effect between RGO nanosheets and Mn3O4 nanocrystals not only alleviates mechanical deformation of the composite but also improves the transport of ions and electrons. As a result, the resulting Mn3O4/RGO nanocomposites deliver a high specific capacity, along with excellent cycle stability and rate performance when used as anode materials for lithium-ion batteries.
  •  
35.
  • Zhang, Sulin, et al. (författare)
  • SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC
  • 2020
  • Ingår i: Autophagy. - Philadelphia : Taylor & Francis. - 1554-8627 .- 1554-8635. ; 16:4, s. 735-749
  • Tidskriftsartikel (refereegranskat)abstract
    • The non-receptor tyrosine kinase SRC is a key mediator of cellular protumorigenic signals. SRC is aberrantly over-expressed and activated in more than 80% of colorectal cancer (CRC) patients, therefore regulation of its stability and activity is essential. Here, we report a significant down regulation of SNX10 (sorting nexin 10) in human CRC tissues, which is closely related to tumor differentiation, TNM stage, lymph node metastasis and survival period. SNX10 deficiency in normal and neoplastic colorectal epithelial cells promotes initiation and progression of CRC in mice. SNX10 controls SRC levels by mediating autophagosome-lysosome fusion and SRC recruitment for autophagic degradation. These mechanisms ensure proper controlling of the activities of SRC-STAT3 and SRC-CTNNB1 signaling pathways by up-regulating SNX10 expression under stress conditions. These findings suggest that SNX10 acts as a tumor suppressor in CRC and it could be a potential therapeutic target for future development.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG12: autophagy related 12; CQ: chloroquine; CRC: colorectal cancer; CTNNB1: catenin beta 1; EBSS: Earle's balanced salt solution; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; mRNA: messenger RNA; PX: phox homology; RT-qPCR: real time quantitative polymerase chain reaction; siRNA: small interfering RNA; SNX10: sorting nexin 10; SQSTM1: sequestosome 1; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; WT: wild type. © 2019 Informa UK Limited, trading as Taylor & Francis Group
  •  
36.
  • Zheng, Meiyu, et al. (författare)
  • Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis
  • 2023
  • Ingår i: Frontiers of Chemical Science and Engineering. - : Springer Science and Business Media LLC. - 2095-0187 .- 2095-0179. ; 17:4, s. 425-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetoin is an important platform chemical, which has a wide range of applications in many industries. Halomonas bluephagenesis, a chassis for next generation of industrial biotechnology, has advantages of fast growth and high tolerance to organic acid salts and alkaline environment. Here, α-acetolactate synthase and α-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H. bluephagenesis to produce acetoin from pyruvate. After reaction condition optimization and further increase of α-acetolactate decarboxylase expression, acetoin production and yield were significantly enhanced to 223.4 mmol·L−1 and 0.491 mol·mol−1 from 125.4 mmol·L−1 and 0.333 mol·mol−1, respectively. Finally, the highest titer of 974.3 mmol·L−1 (85.84 g·L−1) of acetoin was accumulated from 2143.4 mmol·L−1 (188.6 g·L−1) of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions. Moreover, the reusability of the cell catalysis was also tested, and the result illustrated that the whole-cell catalysis obtained 433.3, 440.2, 379.0, 442.8 and 339.4 mmol·L−1 (38.2, 38.8, 33.4, 39.0 and 29.9 g·L−1) acetoin in five repeated cycles under the same conditions. This work therefore provided an efficient H. bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy