SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Warnke Andreas) "

Sökning: WFRF:(Warnke Andreas)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anthoni, Heidi, et al. (författare)
  • A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia.
  • 2007
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 16:6, s. 667-77
  • Tidskriftsartikel (refereegranskat)abstract
    • DYX3, a locus for dyslexia, resides on chromosome 2p11-p15. We have refined its location on 2p12 to a 157 kb region in two rounds of linkage disequilibrium (LD) mapping in a set of Finnish families. The observed association was replicated in an independent set of 251 German families. Two overlapping risk haplotypes spanning 16 kb were identified in both sample sets separately as well as in a joint analysis. In the German sample set, the odds ratio for the most significantly associated haplotype increased with dyslexia severity from 2.2 to 5.2. The risk haplotypes are located in an intergenic region between FLJ13391 and MRPL19/C2ORF3. As no novel genes could be cloned from this region, we hypothesized that the risk haplotypes might affect long-distance regulatory elements and characterized the three known genes. MRPL19 and C2ORF3 are in strong LD and were highly co-expressed across a panel of tissues from regions of adult human brain. The expression of MRPL19 and C2ORF3, but not FLJ13391, were also correlated with the four dyslexia candidate genes identified so far (DYX1C1, ROBO1, DCDC2 and KIAA0319). Although several non-synonymous changes were identified in MRPL19 and C2ORF3, none of them significantly associated with dyslexia. However, heterozygous carriers of the risk haplotype showed significantly attenuated expression of both MRPL19 and C2ORF3, as compared with non-carriers. Analysis of C2ORF3 orthologues in four non-human primates suggested different evolutionary rates for primates when compared with the out-group. In conclusion, our data support MRPL19 and C2ORF3 as candidate susceptibility genes for DYX3.
  •  
2.
  • Matsson, Hans, et al. (författare)
  • Polymorphisms in DCDC2 and S100B associate with developmental dyslexia.
  • 2015
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 60:7, s. 399-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of complex traits have become increasingly successful as progress is made in next-generation sequencing. We aimed at discovering single nucleotide variation present in known and new candidate genes for developmental dyslexia: CYP19A1, DCDC2, DIP2A, DYX1C1, GCFC2 (also known as C2orf3), KIAA0319, MRPL19, PCNT, PRMT2, ROBO1 and S100B. We used next-generation sequencing to identify single-nucleotide polymorphisms in the exons of these 11 genes in pools of 100 DNA samples of Finnish individuals with developmental dyslexia. Subsequent individual genotyping of those 100 individuals, and additional cases and controls from the Finnish and German populations, validated 92 out of 111 different single-nucleotide variants. A nonsynonymous polymorphism in DCDC2 (corrected P = 0.002) and a noncoding variant in S100B (corrected P = 0.016) showed a significant association with spelling performance in families of German origin. No significant association was found for the variants neither in the Finnish case-control sample set nor in the Finnish family sample set. Our findings further strengthen the role of DCDC2 and implicate S100B, in the biology of reading and spelling.
  •  
3.
  • Matsson, Hans, et al. (författare)
  • SNP variations in the 7q33 region containing DGKI are associated with dyslexia in the Finnish and German populations.
  • 2011
  • Ingår i: Behavior Genetics. - : Springer Science and Business Media LLC. - 0001-8244 .- 1573-3297. ; 41:1, s. 134-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Four genes, DYX1C1, ROBO1, DCDC2 and KIAA0319 have been studied both genetically and functionally as candidate genes for developmental dyslexia, a common learning disability in children. The identification of novel genes is crucial to better understand the molecular pathways affected in dyslectic individuals. Here, we report results from a fine-mapping approach involving linkage and association analysis in Finnish and German dyslexic cohorts. We restrict a candidate region to 0.3 Mb on chromosome 7q33. This region harbours the gene diacylglycerol kinase, iota (DGKI) which contains overlapping haplotypes associated with dyslexia in both Finnish and German sample sets.
  •  
4.
  • Schumacher, J, et al. (författare)
  • Linkage analyses of chromosomal region 18p11-q12 in dyslexia
  • 2006
  • Ingår i: Journal of neural transmission. - Vienna, Austria : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 113:3, s. 417-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Dyslexia is characterized as a significant impairment in reading and spelling ability that cannot be explained by low intelligence, low school attendance or deficits in sensory acuity. It is known to be a hereditary disorder that affects about 5% of school aged children, making it the most common of childhood learning disorders. Several susceptibility loci have been reported on chromosomes 1, 2, 3, 6, 15, and 18. The locus on chromosome 18 has been described as having the strongest influence on single word reading, phoneme awareness, and orthographic coding in the largest genome wide linkage study published to date (Fisher et al., 2002). Here we present data from 82 German families in order to investigate linkage of various dyslexia-related traits to the previously described region on chromosome 18p11-q12. Using two- and multipoint analyses, we did not find support for linkage of spelling, single word reading, phoneme awareness, orthographic coding and rapid naming to any of the 14 genotyped STR markers. Possible explanations for our non-replication include differences in study design, limited power of our study and overestimation of the effect of the chromosome 18 locus in the original study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy