SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wehner Birgit) "

Sökning: WFRF:(Wehner Birgit)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Babkovskaia, Natalia, et al. (författare)
  • A DNS study of aerosol and small-scale cloud turbulence interaction
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:12, s. 7889-7898
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study is to investigate the interaction between small-scale turbulence and aerosol and cloud microphysical properties using direct numerical simulations (DNS). We consider the domain located at the height of about 2000 m from the sea level, experiencing transient high supersaturation due to atmospheric fluctuations of temperature and humidity. To study the effect of total number of particles (Ntot) on air temperature, activation and supersaturation, we vary Ntot. To investigate the effect of aerosol dynamics on small-scale turbulence and vertical air motion, we vary the intensity of turbulent fluctuations and the buoyant force. We find that even a small number of aerosol particles (55.5 cm-3), and therefore a small droplet number concentration, strongly affects the air temperature due to release of latent heat. The system comes to an equilibrium faster and the relative number of activated particles appears to be smaller for larger Ntot. We conclude that aerosol particles strongly affect the air motion. In a case of updraught coursed by buoyant force, the presence of aerosol particles results in acceleration of air motion in vertical direction and increase of turbulent fluctuations.
  •  
2.
  • Karlsson, Linn, 1990- (författare)
  • Aerosol–cloud interactions in a warming Arctic
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Atmospheric aerosol particles are small liquid or solid particles suspended in the air. They are present in the atmosphere all around us and affect the planetary energy balance by scattering and absorbing radiation and by interacting with clouds. In model projections of future climate, aerosol–cloud interactions contribute a lot of uncertainty. Large-scale climate models particularly struggle with simulating low-level clouds in the Arctic, which is a region that is not only warming at twice the global average rate or higher but also where natural aerosol emissions are expected to change most as a result of the warming. The goal of this thesis was to study aerosol–cloud interactions to help improve our understanding of what role clouds play in the Arctic climate and how they will respond to climate change. Specifically, the project focused on studying the microphysical properties of aerosol particles and cloud nucleating particles—the subset of aerosol particles that participate in cloud formation. This was done both through field experiments in the high Arctic over the pack ice and by analysis of an existing two-year data set from an Arctic research station on Svalbard.The main instrument used in this thesis was a ground-based counterflow virtual impactor (GCVI) inlet, which dries cloud droplets and ice crystals and allows us to characterise the particles that were inside. The Svalbard study is the longest GCVI study to date, and the first to cover more than a full annual cycle. It also involved a detailed evaluation of the GCVI. Using the GCVI inlet and a large array of other instruments, we were able to show that small, so-called Aitken mode particles act as cloud nucleating particles, supporting results from previous studies. However, our measurements showed these particles to be more abundant in the cloud droplets and ice crystals than expected, both over the pack ice and on Svalbard. While some uncertainties remain, these datasets can potentially be used to evaluate and improve model representations of low-level Arctic clouds. In the other parts of this thesis, we found that iodine nucleation and breakup of larger particles are potential formation pathways for Aitken mode particles over the pack ice. However, detailed chemical composition measurements of cloud nucleating particles would be needed to determine whether these formation mechanisms are important for Arctic cloud formation.
  •  
3.
  • Petäjä, Tuukka, et al. (författare)
  • Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:14, s. 8551-8592
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project iCUPE - integrative and Comprehensive Understanding on Polar Environments to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.
  •  
4.
  • Xavier, Carlton, et al. (författare)
  • Secondary aerosol formation in marine Arctic environments : a model measurement comparison at Ny-Ålesund
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:15, s. 10023-10043
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we modeled the aerosol particle formation along air mass trajectories arriving at the remote Arctic research stations Gruvebadet (67 m a.s.l.) and Zeppelin (474 m a.s.l.), Ny-Ålesund, during May 2018. The aim of this study was to improve our understanding of processes governing secondary aerosol formation in remote Arctic marine environments. We run the Lagrangian chemistry transport model ADCHEM, along air mass trajectories generated with FLEXPART v10.4. The air masses arriving at Ny-Ålesund spent most of their time over the open ice-free ocean. In order to capture the secondary aerosol formation from the DMS emitted by phytoplankton from the ocean surface, we implemented a recently developed comprehensive DMS and halogen multi-phase oxidation chemistry scheme, coupled with the widely used Master Chemical Mechanism (MCM).The modeled median particle number size distributions are in close agreement with the observations in the marine-influenced boundary layer near-sea-surface Gruvebadet site. However, while the model reproduces the accumulation mode particle number concentrations at Zeppelin, it overestimates the Aitken mode particle number concentrations by a factor of ∼5.5. We attribute this to the deficiency of the model to capture the complex orographic effects on the boundary layer dynamics at Ny-Ålesund. However, the model reproduces the average vertical particle number concentration profiles within the boundary layer (0–600 m a.s.l.) above Gruvebadet, as measured with condensation particle counters (CPCs) on board an unmanned aircraft system (UAS).The model successfully reproduces the observed Hoppel minima, often seen in particle number size distributions at Ny-Ålesund. The model also supports the previous experimental findings that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation in the marine Arctic boundary layer in the vicinity of Ny-Ålesund. Precursors resulting from gas- and aqueous-phase DMS chemistry contribute to the subsequent growth of the secondary aerosols. The growth of particles is primarily driven via H2SO4 condensation and formation of methane sulfonic acid (MSA) through the aqueous-phase ozonolysis of methane sulfinic acid (MSIA) in cloud and deliquescent droplets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy