SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weigel K.) "

Sökning: WFRF:(Weigel K.)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abbasi, R., et al. (författare)
  • Improved modeling of in-ice particle showers for IceCube event reconstruction
  • 2024
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 19:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed.
  •  
3.
  • Abbasi, R., et al. (författare)
  • Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube
  • 2024
  • Ingår i: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 2470-0010 .- 2470-0029. ; 110:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of γ=2.58-0.09+0.10 and per-flavor normalization of φper-flavorAstro=1.68-0.22+0.19×10-18×GeV-1 cm-2 s-1 sr-1 (at 100 TeV). The sensitive energy range for this dataset is 3-550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.
  •  
4.
  • Abbasi, R., et al. (författare)
  • Citizen science for IceCube: Name that Neutrino
  • 2024
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 139:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions. Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for both Name that Neutrino and the deep neural network are discussed.
  •  
5.
  • Abbasi, R., et al. (författare)
  • IceCat-1: The IceCube Event Catalog of Alert Tracks
  • 2023
  • Ingår i: Astrophysical Journal, Supplement Series. - : IOP Publishing Ltd. - 1538-4365 .- 0067-0049. ; 269:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert's reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT.
  •  
6.
  • Abbasi, R., et al. (författare)
  • Observation of seasonal variations of the flux of high-energy atmospheric neutrinos with IceCube
  • 2023
  • Ingår i: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric muon neutrinos are produced by meson decays in cosmic-ray-induced air showers. The flux depends on meteorological quantities such as the air temperature, which affects the density of air. Competition between decay and re-interaction of those mesons in the first particle production generations gives rise to a higher neutrino flux when the air density in the stratosphere is lower, corresponding to a higher temperature. A measurement of a temperature dependence of the atmospheric νμ flux provides a novel method for constraining hadronic interaction models of air showers. It is particularly sensitive to the production of kaons. Studying this temperature dependence for the first time requires a large sample of high-energy neutrinos as well as a detailed understanding of atmospheric properties. We report the significant (>10σ) observation of a correlation between the rate of more than 260,000 neutrinos, detected by IceCube between 2012 and 2018, and atmospheric temperatures of the stratosphere, measured by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA’s AQUA satellite. For the observed 10 % seasonal change of effective atmospheric temperature we measure a 3.5(3) % change in the muon neutrino flux. This observed correlation deviates by about 2-3 standard deviations from the expected correlation of 4.3 % as obtained from theoretical predictions under the assumption of various hadronic interaction models.
  •  
7.
  • Abbasi, R., et al. (författare)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
8.
  • Abbasi, R., et al. (författare)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
9.
  • Abbasi, R., et al. (författare)
  • Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
  • 2023
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 108:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.
  •  
10.
  • Abbasi, R., et al. (författare)
  • Search for neutrino lines from dark matter annihilation and decay with IceCube
  • 2023
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 108:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter particles in the Galactic Center and halo can annihilate or decay into a pair of neutrinos producing a monochromatic flux of neutrinos. The spectral feature of this signal is unique and it is not expected from any astrophysical production mechanism. Its observation would constitute a dark matter smoking gun signal. We performed the first dedicated search with a neutrino telescope for such signal, by looking at both the angular and energy information of the neutrino events. To this end, a total of five years of IceCube's DeepCore data has been used to test dark matter masses ranging from 10 GeV to 40 TeV. No significant neutrino excess was found and upper limits on the annihilation cross section, as well as lower limits on the dark matter lifetime, were set. The limits reached are of the order of 10-24 cm3/s for an annihilation and up to 1027 s for decaying dark matter. Using the same data sample we also derive limits for dark matter annihilation or decay into a pair of Standard Model charged particles.
  •  
11.
  • Abbasi, R., et al. (författare)
  • Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A-the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV-provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.
  •  
12.
  • Abbasi, R., et al. (författare)
  • Search for 10-1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for 10-1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level.
  •  
13.
  • Abbasi, R., et al. (författare)
  • Search for decoherence from quantum gravity with atmospheric neutrinos
  • 2024
  • Ingår i: Nature Physics. - 1745-2481 .- 1745-2473. ; 20:6, s. 913-920
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5-10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino-quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.
  •  
14.
  • Abbasi, R., et al. (författare)
  • Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory has been continuously taking data to search for O(0.5–10) s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the O(10) MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.
  •  
15.
  • Boonstra, Wiebren J., et al. (författare)
  • What are the major global threats and impacts in marine environments? Investigating the contours of a shared perception among marine scientists from the bottom-up.
  • 2015
  • Ingår i: Marine Policy. - : Elsevier BV. - 0308-597X .- 1872-9460. ; 60, s. 197-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine scientists broadly agree on which major processes influence the sustainability of marine environments worldwide. Recent studies argue that such shared perceptions crucially shape scientific agendas and are subject to a confirmation bias. Based on these findings a more explicit engagement with scientists' (shared) perceptions of global change in marine environments is called for. This paper takes stock of the shared understanding in marine science of the most pertinent, worldwide threats and impacts that currently affect marine environments. Using results from an email survey among leading academics in marine science this article explores if a shared research agenda in relation to global change in marine environments exists. The analysis demonstrates that marine scientists across disciplines are largely in agreement on some common features of global marine change. Nevertheless, the analysis also highlights where natural and social scientists diverge in their assessment. The article ends discussing what these findings imply for further improvement of interdisciplinary marine science.
  •  
16.
  • Lossow, S., et al. (författare)
  • The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites
  • 2017
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 10:3, s. 1111-1137
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), the amplitudes and phases of the annual, semi-annual and quasi-biennial variation in stratospheric and lower mesospheric water were compared using 30 data sets from 13 different satellite instruments. These comparisons aimed to provide a comprehensive overview of the typical uncertainties in the observational database which can be considered in subsequent observational and modelling studies. For the amplitudes, a good agreement of their latitude and altitude distribution was found. Quantitatively there were differences in particular at high latitudes, close to the tropopause and in the lower mesosphere. In these regions, the standard deviation over all data sets typically exceeded 0.2 ppmv for the annual variation and 0.1 ppmv for the semi-annual and quasi-biennial variation. For the phase, larger differences between the data sets were found in the lower mesosphere. Generally the smallest phase uncertainties can be observed in regions where the amplitude of the variability is large. The standard deviations of the phases for all data sets were typically smaller than a month for the annual and semi-annual variation and smaller than 5 months for the quasi-biennial variation. The amplitude and phase differences among the data sets are caused by a combination of factors. In general, differences in the temporal variation of systematic errors and in the observational sampling play a dominant role. In addition, differences in the vertical resolution of the data, the considered time periods and influences of clouds, aerosols as well as non-local thermodynamic equilibrium (NLTE) effects cause differences between the individual data sets. .1 Symposia of COSPAR Scientific Commission A, held during the Thirty-first COSPAR Scientific Assembly
  •  
17.
  • Novikova, P. Y., et al. (författare)
  • Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1077-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • The notion of species as reproductively isolated units related through a bifurcating tree implies that gene trees should generally agree with the species tree and that sister taxa should not share polymorphisms unless they diverged recently and should be equally closely related to outgroups. It is now possible to evaluate this model systematically. We sequenced multiple individuals from 27 described taxa representing the entire Arabidopsis genus. Cluster analysis identified seven groups, corresponding to described species that capture the structure of the genus. However, at the level of gene trees, only the separation of Arabidopsis thaliana from the remaining species was universally supported, and, overall, the amount of shared polymorphism demonstrated that reproductive isolation was considerably more recent than the estimated divergence times. We uncovered multiple cases of past gene flow that contradict a bifurcating species tree. Finally, we showed that the pattern of divergence differs between gene ontologies, suggesting a role for selection. © 2016 Nature America, Inc. All rights reserved.
  •  
18.
  • Khosrawi, F., et al. (författare)
  • The SPARC water vapour assessment II: Comparison of stratospheric and lower mesospheric water vapour time series observed from satellites
  • 2018
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 11:7, s. 4435-4463
  • Tidskriftsartikel (refereegranskat)abstract
    • Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80°-70°S), the tropics (15°S-15°N) and the Northern Hemisphere mid-latitudes (50°-60°N) at four different altitudes (0.1, 3, 10 and 80hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986-2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
  •  
19.
  • Kiefer, M., et al. (författare)
  • The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 16:19, s. 4589-4642
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10-30 hPa, 30-100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr-1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers.
  •  
20.
  • Lossow, Stefan, 1977, et al. (författare)
  • The SPARC water vapour assessment II: Profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
  • 2019
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 12:5, s. 2693-2732
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is distributed under the Creative Commons Attribution 4.0 License. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed by considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data-set-specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 and 5 hPa. Typically, they range from 0.25 to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases increase with altitude overall but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 and 1 ppmv (4 % to 20 %). Obvious data-set-specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2 σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 and 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 and 0.3 ppmv decade-1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. As for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite the fact that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.
  •  
21.
  • Pedersen, M. W., et al. (författare)
  • Trends in marine climate change research in the Nordic region since the first IPCC report
  • 2016
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 134:1-2, s. 147-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Oceans are exposed to anthropogenic climate change shifting marine systems toward potential instabilities. The physical, biological and social implications of such shifts can be assessed within individual scientific disciplines, but can only be fully understood by combining knowledge and expertise across disciplines. For climate change related problems these research directions have been well-established since the publication of the first IPCC report in 1990, however it is not well-documented to what extent these directions are reflected in published research. Focusing on the Nordic region, we evaluated the development of climate change related marine science by quantifying trends in number of publications, disciplinarity, and scientific focus of 1362 research articles published between 1990 and 2011. Our analysis showed a faster increase in publications within climate change related marine science than in general marine science indicating a growing prioritisation of research with a climate change focus. The composition of scientific disciplines producing climate change related publications, which initially was dominated by physical sciences, shifted toward a distribution with almost even representation of physical and biological sciences with social sciences constituting a minor constant proportion. These trends suggest that the predominantly model-based directions of the IPCC have favoured the more quantitatively oriented natural sciences rather than the qualitative traditions of social sciences. In addition, despite being an often declared prerequisite to successful climate science, we found surprisingly limited progress in implementing interdisciplinary research indicating that further initiatives nurturing scientific interactions are required.
  •  
22.
  • Hegglin, M. I., et al. (författare)
  • SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:20, s. 0148-0227
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the SPARC Data Initiative, the first comprehensive assessment of the quality of 13 water vapor products from 11 limb-viewing satellite instruments (LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS) obtained within the time period 1978–2010 has been performed. Each instrument's water vapor profile measurements were compiled into monthly zonal mean time series on a common latitude-pressure grid. These time series serve as basis for the “climatological” validation approach used within the project. The evaluations include comparisons of monthly or annual zonal mean cross sections and seasonal cycles in the tropical and extratropical upper troposphere and lower stratosphere averaged over one or more years, comparisons of interannual variability, and a study of the time evolution of physical features in water vapor such as the tropical tape recorder and polar vortex dehydration. Our knowledge of the atmospheric mean state in water vapor is best in the lower and middle stratosphere of the tropics and midlatitudes, with a relative uncertainty of ±2–6% (as quantified by the standard deviation of the instruments' multiannual means). The uncertainty increases toward the polar regions (±10–15%), the mesosphere (±15%), and the upper troposphere/lower stratosphere below 100 hPa (±30–50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapor. The minimum found in multiannual (1998–2008) mean water vapor in the tropical lower stratosphere is 3.5 ppmv (±14%), with slightly larger uncertainties for monthly mean values. The frequently used HALOE water vapor data set shows consistently lower values than most other data sets throughout the atmosphere, with increasing deviations from the multi-instrument mean below 100 hPa in both the tropics and extratropics. The knowledge gained from these comparisons and regarding the quality of the individual data sets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g., for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability.
  •  
23.
  • Hegglin, M. I., et al. (författare)
  • Vertical structure of stratospheric water vapour trends derived from merged satellite data
  • 2014
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 7:10, s. 768-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.
  •  
24.
  • Liemohn, Michael W., et al. (författare)
  • Model Evaluation Guidelines for Geomagnetic Index Predictions
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 2079-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near‐Earth space into a single parameter. Most of the best‐known indices are calculated from ground‐based magnetometer data sets, such as Dst, SYM‐H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root‐mean‐square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices.
  •  
25.
  • Rahpoe, N., et al. (författare)
  • Relative drifts and biases between six ozone limb satellite measurements from the last decade
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:10, s. 4369-4381
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of European Space Agency's (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA's Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA's third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3 % decade-1 (1s). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Gerotziafas, GT, et al. (författare)
  • Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine
  • 2020
  • Ingår i: Thrombosis and haemostasis. - : Georg Thieme Verlag KG. - 2567-689X .- 0340-6245. ; 120:12, s. 1597-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is also manifested with hypercoagulability, pulmonary intravascular coagulation, microangiopathy, and venous thromboembolism (VTE) or arterial thrombosis. Predisposing risk factors to severe COVID-19 are male sex, underlying cardiovascular disease, or cardiovascular risk factors including noncontrolled diabetes mellitus or arterial hypertension, obesity, and advanced age. The VAS-European Independent Foundation in Angiology/Vascular Medicine draws attention to patients with vascular disease (VD) and presents an integral strategy for the management of patients with VD or cardiovascular risk factors (VD-CVR) and COVID-19. VAS recommends (1) a COVID-19-oriented primary health care network for patients with VD-CVR for identification of patients with VD-CVR in the community and patients' education for disease symptoms, use of eHealth technology, adherence to the antithrombotic and vascular regulating treatments, and (2) close medical follow-up for efficacious control of VD progression and prompt application of physical and social distancing measures in case of new epidemic waves. For patients with VD-CVR who receive home treatment for COVID-19, VAS recommends assessment for (1) disease worsening risk and prioritized hospitalization of those at high risk and (2) VTE risk assessment and thromboprophylaxis with rivaroxaban, betrixaban, or low-molecular-weight heparin (LMWH) for those at high risk. For hospitalized patients with VD-CVR and COVID-19, VAS recommends (1) routine thromboprophylaxis with weight-adjusted intermediate doses of LMWH (unless contraindication); (2) LMWH as the drug of choice over unfractionated heparin or direct oral anticoagulants for the treatment of VTE or hypercoagulability; (3) careful evaluation of the risk for disease worsening and prompt application of targeted antiviral or convalescence treatments; (4) monitoring of D-dimer for optimization of the antithrombotic treatment; and (5) evaluation of the risk of VTE before hospital discharge using the IMPROVE-D-dimer score and prolonged post-discharge thromboprophylaxis with rivaroxaban, betrixaban, or LMWH.
  •  
30.
  • Khosrawi, F., et al. (författare)
  • Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:1, s. 101-121
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (20002014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in water vapour and particular temperature the severe denitrification observed in 2010/11 cannot be directly related to any changes in water vapour and temperature since the millennium. However, the observations indicate a clear correlation between cold winters and enhanced water vapour mixing ratios. This indicates a connection between dynamical and radiative processes that govern water vapour and temperature in the Arctic lower stratosphere.
  •  
31.
  • Khosrawi, F., et al. (författare)
  • Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus GmbH. - 1680-7375 .- 1680-7367. ; 15:13, s. 17743-17796
  • Forskningsöversikt (refereegranskat)abstract
    • More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H 2 O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H 2 O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Although in the polar regions no significant trend is found in the lower stratosphere, we found from the observations a correlation between cold winters and enhanced water vapour mixing ratios.
  •  
32.
  •  
33.
  • Mateos, Julieta L., et al. (författare)
  • PICLN modulates alternative splicing and light/temperature responses in plants
  • 2023
  • Ingår i: Plant Physiology. - : Oxford University Press. - 0032-0889 .- 1532-2548. ; 191:2, s. 1036-1051
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants undergo transcriptome reprograming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.
  •  
34.
  • Spinelli, L., et al. (författare)
  • Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink
  • 2014
  • Ingår i: Biomedical Optics Express. - : Optical Society of America. - 2156-7085. ; 5:7, s. 2037-2053
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable.
  •  
35.
  •  
36.
  • Welling, D. T., et al. (författare)
  • Recommendations for Next-Generation Ground Magnetic Perturbation Validation
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 1912-1920
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-model validation of ground magnetic perturbation forecasts, specifically of the time rate of change of surface magnetic field, dB/dt, is a critical task for model development and for mitigation of geomagnetically induced current effects. While a current, community-accepted standard for dB/dt validation exists (Pulkkinen et al., 2013), it has several limitations that prevent more complete understanding of model capability. This work presents recommendations from the International Forum for Space Weather Capabilities Assessment Ground Magnetic Perturbation Working Team for creating a next-generation validation suite. Four recommendations are made to address the existing suite: greatly expand the number of ground observatories used, expand the number of events included in the suite from six to eight, generate metrics as a function of magnetic local time, and generate metrics as a function of activity type. For each of these, implementation details are explored. Limitations and future considerations are also discussed.
  •  
37.
  •  
38.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38
Typ av publikation
tidskriftsartikel (35)
annan publikation (1)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Kolanoski, H. (14)
Moore, R. W. (14)
Nagai, R. (14)
Neumann, M. (14)
Tollefson, K. (14)
Weigel, P. (14)
visa fler...
Zhang, Z. (13)
Bai, X. (13)
Schindler, S. (13)
Engel, R. (13)
Silva, M. (13)
Choi, S. (13)
Kumar, A. (13)
Snihur, R. (13)
Kowalski, M. (13)
Van Eijndhoven, N. (13)
Ackermann, M. (13)
Adams, J. (13)
Aguilar, J. A. (13)
Barwick, S. W. (13)
Bay, R. (13)
Beatty, J. J. (13)
BenZvi, S. (13)
Berley, D. (13)
Bernardini, E. (13)
Besson, D. Z. (13)
Blaufuss, E. (13)
Chirkin, D. (13)
Cowen, D. F. (13)
De Clercq, C. (13)
Desiati, P. (13)
de Vries, K. D. (13)
de Wasseige, G. (13)
DeYoung, T. (13)
Diaz-Velez, J. C. (13)
Ehrhardt, T. (13)
Fazely, A. R. (13)
Fedynitch, A. (13)
Gerhardt, L. (13)
Gonzalez, J. G. (13)
Grant, D. (13)
Halzen, F. (13)
Hanson, K. (13)
Helbing, K. (13)
Hickford, S. (13)
Hoffman, K. D. (13)
Hoshina, K. (13)
Ishihara, A. (13)
Japaridze, G. S. (13)
Kappes, A. (13)
visa färre...
Lärosäte
Chalmers tekniska högskola (22)
Stockholms universitet (15)
Uppsala universitet (10)
Karolinska Institutet (5)
Umeå universitet (3)
Lunds universitet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
Örebro universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Teknik (2)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy