SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weinberger Alycia J.) "

Sökning: WFRF:(Weinberger Alycia J.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flagg, Laura, et al. (författare)
  • Debris Disks Can Contaminate Mid-infrared Exoplanet Spectra: Evidence for a Circumstellar Debris Disk around Exoplanet Host WASP-39
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 969:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The signal from a transiting planet can be diluted by astrophysical contamination. In the case of circumstellar debris disks, this contamination could start in the mid-infrared and vary as a function of wavelength, which would then change the observed transmission spectrum for any planet in the system. The MIRI/Low Resolution Spectrometer WASP-39b transmission spectrum shows an unexplained dip starting at ∼10 μm that could be caused by astrophysical contamination. The spectral energy distribution displays excess flux at similar levels to that which are needed to create the dip in the transmission spectrum. In this Letter, we show that this dip is consistent with the presence of a bright circumstellar debris disk, at a distance of >2 au. We discuss how a circumstellar debris disk like that could affect the atmosphere of WASP-39b. We also show that even faint debris disks can be a source of contamination in MIRI exoplanet spectra.
  •  
2.
  • Santana, Felipe A., et al. (författare)
  • Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:6
  • Tidskriftsartikel (refereegranskat)abstract
    • APOGEE is a high-resolution (R similar to 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.
  •  
3.
  • Youngblood, Allison, et al. (författare)
  • A Radiatively Driven Wind from the η Tel Debris Disk
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 162:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present far- and near-ultraviolet absorption spectroscopy of the ∼23 Myr edge-on debris disk surrounding the A0V star η Telescopii, obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph. We detect absorption lines from C i, C ii, O i, Mg ii, Al ii, Si ii, S ii, Mn ii, Fe ii, and marginally N i. The lines show two clear absorption components at −22.7 ± 0.5 km s−1 and −17.8 ± 0.7 km s−1, which we attribute to circumstellar (CS) and interstellar gas, respectively. CO absorption is not detected, and we find no evidence for star-grazing exocomets. The CS absorption components are blueshifted by −16.9 ± 2.6 km s−1 in the star's reference frame, indicating that they are outflowing in a radiatively driven disk wind. We find that the C/Fe ratio in the η Tel CS gas is significantly higher than the solar ratio, as is the case in the β Pic and 49 Cet debris disks. Unlike those disks, however, the measured C/O ratio in the η Tel CS gas is consistent with the solar value. Our analysis shows that because η Tel is an earlier type star than β Pic and 49 Cet, with more substantial radiation pressure at the dominant C ii transitions, this species cannot bind the CS gas disk to the star as it does for β Pic and 49 Cet, resulting in the disk wind.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy