SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weise Christoph 1973 ) "

Sökning: WFRF:(Weise Christoph 1973 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilar, Ximena, 1978-, et al. (författare)
  • Macromolecular crowding extended to a heptameric system : the co-chaperonin protein 10
  • 2011
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 50:14, s. 3034-3044
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on monomeric proteins have shown that macromolecular crowding can stabilize toward heat perturbation and also modulate native-state structure. To assess the effects of macromolecular crowding on unfolding of an oligomeric protein, we here tested the effects of the synthetic crowding agent Ficoll 70 on human cpn10 (GroES in E. coli), a heptameric protein consisting of seven identical β-barrel subunits assembling into a ring. Using far-UV circular dichroism (CD), tyrosine fluorescence, nuclear magnetic resonance (NMR), and cross-linking experiments, we investigated thermal and chemical stability, as well as the heptamer-monomer dissociation constant, without and with crowding agent. We find that crowding shifts the heptamer-monomer equilibrium constant in the direction of the heptamer. The cpn10 heptamer is both thermally and thermodynamically stabilized in 300 mg/mL Ficoll 70 as compared to regular buffer conditions. Kinetic unfolding experiments show that the increased stability in crowded conditions, in part, is explained by slower unfolding rates. A thermodynamic cycle reveals that in presence of 300 mg/mL Ficoll the thermodynamic stability of each cpn10 monomer increases by over 30%, whereas the interfaces are stabilized by less than 10%. We also introduce a new approach to analyze the spectroscopic data that makes use of multiple wavelengths: this provides robust error estimates of thermodynamic parameters.
  •  
2.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Arabidopsis thaliana peroxiredoxin Q is extraordinarily dynamic on the μs-ms timescale
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted as the resolving cysteine, generating an intermolecular disulphide bond to expel a second water molecule into solution. PrxQ is finally recycled to the active state by a thioredoxin dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here we have performed a detailed study of the structure and dynamics of PrxQ in both the oxidized and reduced state. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Model-free analyses of NMR spin relaxation show that PrxQ is monomeric in both oxidation states. As evident from fast R2 relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of the conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
  •  
3.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q
  • 2011
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1814:12, s. 1880-1890
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
  •  
4.
  • Ådén, Jörgen, 1980-, et al. (författare)
  • Structural topology and activation of an initial adenylate kinase-substrate complex
  • 2013
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 52:6, s. 1055-1061
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymatic activity is ultimately defined by the structure, chemistry and dynamics of the Michaelis complex. There exist a large number of experimentally determined structures between enzymes and substrates or substrate analogues or inhibitors. However, transient, short-lived encounter and equilibrium structures also play fundamental roles during enzymatic reaction cycles. Such structures are inherently difficult to study with conventional experimental techniques. The enzyme adenylate kinase undergoes major conformational rearrangements in response to binding of its substrates ATP and AMP. ATP is sandwiched between two binding surfaces in the closed and active enzyme conformation. Thus, ade-nylate kinase harbors two spatially distant surfaces in the substrate free open conformation of which one is responsible for the initial interaction with ATP. Here, we have performed primarily nuclear magnetic resonance experiments on Escherichia coli adenylate kinase (AKeco) variants that enabled identification of the site responsible for the initial ATP interaction. This allowed a characterization of the structural topology of an initial equilibrium complex between AKeco and ATP. Based on the results it is suggested that the ATP binding mechanism to AKeco is a mixture between "induced fit" and "conformational selection" models. It is shown that ATP is activated in the initial enzyme bound complex since it displays an appreciable rate of non-productive ATP hydrolysis. In summary our results provide novel structural and functional insights into adenylate kinase catalysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy