SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weishaupt Jochen) "

Sökning: WFRF:(Weishaupt Jochen)

  • Resultat 1-43 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yilmaz, Rüstem, et al. (författare)
  • Frequency of C9orf72 and SOD1 mutations in 302 sporadic ALS patients from three German ALS centers
  • 2023
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Taylor & Francis. - 2167-8421 .- 2167-9223. ; 24:5-6, s. 414-419
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: ALS patients with a negative family history (sporadic ALS, SALS) represent more than 90% of all ALS cases. In light of the gene-specific therapies that are currently in development for ALS, knowledge about the genetic landscape of SALS in Germany is urgently needed.Objectives: We aimed to determine the frequency of C9orf72 hexanucleotide repeat expansion (HRE) and SOD1 mutations among patients in Germany with a diagnosis of sporadic or idiopathic ALS.Methods: We genotyped SALS patients from three German ALS centers. Sanger sequencing, fragment length analysis, and repeat-primed PCR technologies were used to detect mutations in SOD1 and C9orf72 HRE. Pathological C9orf72 HRE results were confirmed in an independent laboratory.Results: In 302 patients with SALS, 27 (8.9%) patients with a C9orf72 HRE mutation were detected. Moreover, we identified two patients with a pathogenic SOD1 mutation, one patient with a heterozygous p.D91A mutation in SOD1, and three additional patients with rare SOD1 variants not predicted to change the amino acid sequence.Conclusions: According to our data, the proportion of SALS patients with SOD1 mutations is in the expected range, whereas that with C9orf72 HRE is higher, suggesting a reduced penetrance. A considerable number of SALS patients can be amenable to gene-specific therapies.
  •  
2.
  • Auer-Grumbach, Michaela, et al. (författare)
  • Rare Variants in MME, Encoding Metalloprotease Neprilysin, Are Linked to Late-Onset Autosomal-Dominant Axonal Polyneuropathies
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:3, s. 607-623
  • Tidskriftsartikel (refereegranskat)abstract
    • Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade beta-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.
  •  
3.
  •  
4.
  • Brenner, David, et al. (författare)
  • FUS mutations dominate TBK1 mutations in FUS/TBK1 double-mutant ALS/FTD pedigrees
  • 2022
  • Ingår i: Neurogenetics. - : Springer. - 1364-6745 .- 1364-6753. ; 23, s. 59-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in FUS and TBK1 often cause aggressive early-onset amyotrophic lateral sclerosis (ALS) or a late-onset ALS and/or frontotemporal dementia (FTD) phenotype, respectively. Co-occurrence of mutations in two or more Mendelian ALS/FTD genes has been repeatedly reported. However, little is known how two pathogenic ALS/FTD mutations in the same patient interact to shape the final phenotype. We screened 28 ALS patients with a known FUS mutation by whole-exome sequencing and targeted evaluation for mutations in other known ALS genes followed by genotype–phenotype correlation analysis of FUS/TBK1 double-mutant patients. We report on new and summarize previously published FUS and TBK1 double-mutant ALS/FTD patients and their families. We found that, within a family, mutations in FUS cause ALS while TBK1 single mutations are observed in FTD patients. FUS/TBK1 double mutations manifested as ALS and without a manifest difference regarding age at onset and disease duration when compared to FUS single-mutant individuals. In conclusion, TBK1 and FUS variants do not seem to interact in a simple additive way. Rather, the phenotype of FUS/TBK1 double-mutant patients appears to be dominated by the FUS mutation.
  •  
5.
  • Brenner, David, et al. (författare)
  • Hot-spot KIF5A mutations cause familial ALS
  • 2018
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 141, s. 688-697
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 x 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p. Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 x 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis.
  •  
6.
  •  
7.
  •  
8.
  • Brockmann, Sarah J., et al. (författare)
  • CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency
  • 2018
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 27:4, s. 706-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p. R15L and p. G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p. P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p. R15L and p. G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p. R15L, but not of CHCHD10 p. G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p. G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p. P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p. R15L and p. G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.
  •  
9.
  • Daria, Tselmen, et al. (författare)
  • Genotypes of amyotrophic lateral sclerosis in Mongolia
  • 2019
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 90:11, s. 1300-1302
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Diekstra, Frank P., et al. (författare)
  • C9orf72 and UNC13A Are Shared Risk Loci for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia : A Genome-Wide Meta-Analysis
  • 2014
  • Ingår i: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 76:1, s. 120-133
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. Methods: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. Results: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 x 10(-12)) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 x 10(-11)) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 x 10(-7)) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 x 10(-7)). Interpretation: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.
  •  
11.
  • Dilliott, Allison A., et al. (författare)
  • Clinical testing panels for ALS : global distribution, consistency, and challenges
  • 2023
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Taylor & Francis. - 2167-8421 .- 2167-9223. ; 24:5-6, s. 420-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS.Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests.Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes.Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.
  •  
12.
  • Dorst, Johannes, et al. (författare)
  • Metabolic alterations precede neurofilament changes in presymptomatic ALS gene carriers
  • 2023
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The emergence of potentially effective new therapies for genetic forms of amyotrophic lateral sclerosis (ALS) necessitates the identification of biomarkers to facilitate early treatment, prior to the onset of motor symptoms. Here, we sought to investigate whether metabolic alterations are detectable in presymptomatic ALS gene mutation carriers, and whether such alterations precede neurofilament light chain (NfL) changes in serum.Methods: Between 02/2014 and 11/2021, we prospectively studied 60 presymptomatic ALS gene mutation carriers (40% male, age 48.7 ± 14.9; 28 C9orf72, 22 SOD1, 10 other) compared to 73 individuals from the same families (47% male, age 47.4 ± 12.9) without pathogenic mutations as controls. Bioimpedance analysis (BIA) and indirect calorimetry were performed, and Body Mass Index (BMI), Fat Mass (FM), Body Fat Percentage, Body Water (BW), Lean Body Mass (LBM), Extracellular Mass (ECM), Body Cell Mass (BCM), ECM/BCM ratio, Cells Percentage, Phase Angle, Resting Metabolic Rate (RMR), Metabolic Ratio (MR), and NfL were measured. Participants and evaluators were blinded regarding gene carrier status.Findings: Presymptomatic ALS gene carriers showed reduced LBM (p = 0.02), BCM (p = 0.004), Cells Percentage (p = 0.04), BW (p = 0.02), Phase Angle (p = 0.04), and increased ECM/BCM ratio (p = 0.04), consistently indicating a loss of metabolically active body cells. While in C9orf72 mutation carriers all tissue masses were reduced, only metabolically active tissue was affected in SOD1 mutation carriers. Unexpectedly, RMR (p = 0.009) and MR (p = 0.01) were lower in presymptomatic ALS gene carriers compared to non-carriers. NfL serum levels were similar in mutation carriers and non-carriers (p = 0.60).Interpretation: The observed metabolic phenomena might reflect reduced physical activity and/or preemptive, insufficient compensatory mechanisms to prepare for the later hypermetabolic state. As pre-symptomatic biomarkers we propose ECM/BCM ratio and Phase Angle for SOD1, and a 4-compartment affection in BIA for C9orf72 mutation carriers.
  •  
13.
  • Endo, Satoshi, et al. (författare)
  • Instability of C154Y variant of aldo-keto reductase 1C3
  • 2017
  • Ingår i: Chemico-Biological Interactions. - : Elsevier. - 0009-2797 .- 1872-7786. ; 276, s. 194-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Aldo-keto reductase (AKR) 1C3 is a cytosolic enzyme that metabolizes steroids, prostaglandins, toxic aldehydes and drugs. Recently, some nonsynonymous single nucleotide polymorphisms of AKR1C3 have been suggested to impact steroid and drug metabolism. In this study, we examined the effects of C154Y and L159V variants of AKR1C3 on stability and function of the enzyme. Both variants had been detected in patients with the neurodegenerative disease amyotrophic lateral sclerosis. Recombinant wild-type (WT), C154Y and L159V enzymes were similar in specific activity, but C154Y displayed much lower thermostability than WT and L159V. C154Y was inactivated by 10-min incubation at >25 °C, and about 90% of its activity was lost at 40 °C. Differential scanning fluorimetry revealed that Tm (thermal denaturation midpoint) of C154Y was lower than that of WT. In order to study the cause of thermosensitivity of C154Y, we prepared C154F and C154S mutant AKR1C3s. Like C154Y, C154F was highly sensitive to thermal inactivation, whereas C154S showed almost the same thermostability as WT. The C154F and C154Y variants induced secondary and tertiary structural changes in AKR1C3 at 40 °C as reflected by their altered circular dichroism and 8-anilinonaphthalene-1-sulfonate fluorescence characteristics. These results suggest that the replacement of C154 with a residue possessing a bulky aromatic side-chain impairs the folding of the α-helix containing C154 and its neighboring secondary structures, leading to low thermostability of AKR1C3. AKR1C3 metabolizes cytotoxic 4-oxo-2-nonenal into a less toxic metabolite, and overexpression of WT in HEK293 cells alleviated the 4-oxo-2-nonenal-induced cytotoxicity. In contrast, the overexpression of C154Y in the cells did not show such a significant protective effect, suggesting that C154Y is unstable in cells.
  •  
14.
  • Freischmidt, Axel, et al. (författare)
  • A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis
  • 2021
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 144:4, s. 1214-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.
  •  
15.
  • Freischmidt, Axel, et al. (författare)
  • Association of Mutations in TBK1 With Sporadic and Familial Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
  • 2017
  • Ingår i: JAMA Neurology. - : American Medical Association. - 2168-6149 .- 2168-6157. ; 74:1, s. 110-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative syndromes that occur sporadically or have been associated with mostly dominant inheritance of mutations in more than 30 genes. A critical issue is whether all reported mutations are disease causing or are coincidental findings. In this review we analyze the pathogenicity of nonsynonymous variants in the newly discovered gene encoding TANK-binding kinase 1 (TBK1). The available data suggest that mutations in TBK1 that cause a 50% reduction of TBK1 protein levels are pathogenic. In most cases, the almost complete loss of expression of the mutated TBK1 allele is due to loss-of-function mutations creating a premature termination codon and the degradation of the mutated messenger RNA by nonsense-mediated messenger RNA decay. In addition, TBK1 protein levels reduced by 50% have been proven for specific in-frame deletions of 1 or several amino acids, probably due to increased degradation of the mutated protein. Evaluation of many of the TBK1 missense mutations found in patients with ALS or FTD is prevented by missing data demonstrating cosegregation of the variants and incomplete knowledge about the TBK1 functions relevant for neurodegeneration. These findings suggest that haploinsufficiency of TBK1 is causative for ALS and FTD regardless of the type of mutation. Evaluation of TBK1 variants that do not cause haploinsufficiency is not possible without data demonstrating cosegregation.
  •  
16.
  •  
17.
  • Freischmidt, Axel, et al. (författare)
  • Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
  • 2015
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 18:5, s. 631-
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.
  •  
18.
  • Freischmidt, Axel, et al. (författare)
  • Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 137:11, s. 2938-2950
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about the nature of pathomolecular alterations preceding onset of symptoms in amyotrophic lateral sclerosis is largely lacking. It could not only pave the way for the discovery of valuable therapeutic targets but might also govern future concepts of pre-manifest disease modifying treatments. MicroRNAs are central regulators of transcriptome plasticity and participate in pathogenic cascades and/or mirror cellular adaptation to insults. We obtained comprehensive expression profiles of microRNAs in the serum of patients with familial amyotrophic lateral sclerosis, asymptomatic mutation carriers and healthy control subjects. We observed a strikingly homogenous microRNA profile in patients with familial amyotrophic lateral sclerosis that was largely independent from the underlying disease gene. Moreover, we identified 24 significantly downregulated microRNAs in pre-manifest amyotrophic lateral sclerosis mutation carriers up to two decades or more before the estimated time window of disease onset; 91.7% of the downregulated microRNAs in mutation carriers overlapped with the patients with familial amyotrophic lateral sclerosis. Bioinformatic analysis revealed a consensus sequence motif present in the vast majority of downregulated microRNAs identified in this study. Our data thus suggest specific common denominators regarding molecular pathogenesis of different amyotrophic lateral sclerosis genes. We describe the earliest pathomolecular alterations in amyotrophic lateral sclerosis mutation carriers known to date, which provide a basis for the discovery of novel therapeutic targets and strongly argue for studies evaluating presymptomatic disease-modifying treatment in amyotrophic lateral sclerosis.
  •  
19.
  • Helferich, Anika M., et al. (författare)
  • Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS
  • 2018
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 75:23, s. 4301-4319
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.
  •  
20.
  • Ingre, Caroline, 1977-, et al. (författare)
  • A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts
  • 2013
  • Ingår i: Neurobiology of Aging. - New York : Elsevier. - 0197-4580 .- 1558-1497. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have veryrecently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, weperformed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporaldementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenicrelevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United Stateswere screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. Ina German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which wasabsent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recentlydescribed p.Gln117Gly sequence variant was found in another familial ALS patient from the United States.The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overtcognitive involvement. PFN1 mutations were absent in patients with motor neuron disease anddementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can causeALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the“classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proofof-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motorneuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization byphosphorylation of profilin 1 might be necessary for motor neuron survival.
  •  
21.
  • Kenna, Kevin P., et al. (författare)
  • NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1037-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261 His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261 His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
  •  
22.
  • Lange, Dale J., et al. (författare)
  • Pyrimethamine Significantly Lowers Cerebrospinal Fluid Cu/Zn Superoxide Dismutase in Amyotrophic Lateral Sclerosis Patients with SOD1 Mutations
  • 2017
  • Ingår i: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 81:6, s. 837-848
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1-transgenic animal models. Pyrimethamine produces dose-dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). Methods: A multicenter (5 sites), open-label, 9-month-duration, dose-ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale-Revised, and McGill Quality of Life Single-Item Scale were measured at screening, visit 6, and visit 9. Results: We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p<0.001) with a mean reduction of 13.5% (95% confidence interval [CI] 58.4-18.5) and at visit 9 (p<0.001) with a mean reduction of 10.5% (95% CI55.2-15.8). Interpretation: Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long-term studies are warranted to assess clinical efficacy.
  •  
23.
  • Lulé, Dorothée E., et al. (författare)
  • Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder
  • 2020
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 91:11, s. 1195-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A mutation in C9orf72 constitute a cross-link between amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). At clinical manifestation, both patient groups may present with either cognitive impairment of predominantly behaviour or language (in FTD) or motor dysfunctions (in ALS).Methods: In total, 36 non-symptomatic mutation carriers from ALS or FTD families were examined, including 21 subjects with C9orf72 and 15 with SOD1 mutations. Data were compared with 91 age-matched, education-matched and gender-matched healthy subjects (56 were first-degree relatives from ALS or FTD families, 35 with no known family history of ALS/FTD). MRI scanning for diffusion tensor imaging was performed to map fractional anisotropy (FA). Subjects performed an extensive neuropsychological assessment to address verbal fluency, language, executive, memory and visuospatial function. Measurements were repeated after 12 months.Results: C9orf72 expansion carriers performed significantly worse in verbal fluency and non-verbal memory and presented with distinct alterations in structural white matter integrity indicated by lower FA values in inferior and orbitofrontal cortical areas compared with carriers of SOD1 mutations or healthy subjects. Loss of structural integrity was associated with decreased verbal fluency performance. White matter alterations and cognitive performance showed no changes over 12 months in all subjects.Discussion: Reduced verbal fluency performance seems to be a distinct clinical feature of C9orf72 carriers before symptomatic disease onset without evidence for change over time in our cohort. The results support the emerging hypothesis of a general disorder in development in addition to neurodegeneration in C9orf72 carriers.
  •  
24.
  • Megat, Salim, et al. (författare)
  • Integrative genetic analysis illuminates ALS heritability and identifies risk genes
  • 2023
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) has substantial heritability, in part shared with fronto-temporal dementia (FTD). We show that ALS heritability is enriched in splicing variants and in binding sites of 6 RNA-binding proteins including TDP-43 and FUS. A transcriptome wide association study (TWAS) identified 6 loci associated with ALS, including in NUP50 encoding for the nucleopore basket protein NUP50. Independently, rare variants in NUP50 were associated with ALS risk (P = 3.71.10−03; odds ratio = 3.29; 95%CI, 1.37 to 7.87) in a cohort of 9,390 ALS/FTD patients and 4,594 controls. Cells from one patient carrying a NUP50 frameshift mutation displayed a decreased level of NUP50. Loss of NUP50 leads to death of cultured neurons, and motor defects in Drosophila and zebrafish. Thus, our study identifies alterations in splicing in neurons as critical in ALS and provides genetic evidence linking nuclear pore defects to ALS.
  •  
25.
  • Mueller, Kathrin, et al. (författare)
  • Comprehensive analysis of the mutation spectrum in 301 German ALS families
  • 2018
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 89:8, s. 817-827
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions.Methods Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families.Results 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1, whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes.Conclusions We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe.
  •  
26.
  •  
27.
  • Müller, Kathrin, et al. (författare)
  • De novo mutations in SOD1 are a cause of ALS
  • 2022
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 93, s. 201-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The only identified cause of amyotrophic lateral sclerosis (ALS) are mutations in a number of genes found in familial cases but also in sporadic cases. De novo mutations occurring in a parental gonadal cell, in the zygote or postzygotic during embryonal development can result in an apparently sporadic/isolated case of ALS later in life. We searched for de novo mutations in SOD1 as a cause of ALS.Methods: We analysed peripheral-blood exome, genome and Sanger sequencing to identify deleterious mutations in SOD1 in 4000 ALS patients from Germany, South Korea and Sweden. Parental kinship was confirmed using highly polymorphic microsatellite markers across the genome. Medical genealogical and clinical data were reviewed and compared with the literature.Results: We identified four sporadic ALS cases with de novo mutations in SOD1. They aggregate in hot-spot codons earlier found mutated in familial cases. Their phenotypes match closely what has earlier been reported in familial cases with pathogenic mutations in SOD1. We also encountered familial cases where de novo mutational events in recent generations may have been involved.Conclusions:  De novo mutations are a cause of sporadic ALS and may also be underpinning smaller families with few affected ALS cases. It was not possible to ascertain if the origin of the de novo mutations was parental germline, zygotic or postzygotic during embryonal development. All ALS patients should be offered genetic counselling and genetic screening, the challenges of variant interpretation do not outweigh the potential benefits including earlier confirmed diagnosis and possible bespoken therapy.Data availability statement: Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information.
  •  
28.
  • Naumann, Marcel, et al. (författare)
  • Phenotypes and malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis
  • 2019
  • Ingår i: Annals of Clinical and Translational Neurology. - : John Wiley & Sons. - 2328-9503. ; 6:12, s. 2384-2394
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Mutations in Fused in Sarcoma (FUS or TLS) are the fourth most prevalent in Western European familial amyotrophic lateral sclerosis (ALS) populations and have been associated with causing both early and very late disease onset. FUS aggregation, DNA repair deficiency, and genomic instability are contributors to the pathophysiology of FUS-ALS, but their clinical significance per se and their influence on the clinical variability have yet to be sufficiently investigated. The aim of this study was to analyze genotype-phenotype correlations and malignancy rates in a newly compiled FUS-ALS cohort.Methods: We cross-sectionally reviewed FUS-ALS patient histories in a multicenter cohort with 36 novel cases and did a meta-analysis of published FUS-ALS cases reporting the largest genotype-phenotype correlation of FUS-ALS.Results: The age of onset (median 39 years, range 11-80) was positively correlated with the disease duration. C-terminal domain mutations were found in 90%. Among all, P525L and truncating/ frameshift mutations most frequently caused juvenile onset, rapid disease progression, and atypical ALS often associated with negative family history while the R521 mutation site was associated with late disease onset and pure spinal phenotype. Malignancies were found in one of 40 patients.Interpretation: We report the largest genotype-phenotype correlation of FUS-ALS, which enables a careful prediction of the clinical course in newly diagnosed patients. In this cohort, FUS-ALS patients did not have an increased risk for malignant diseases.
  •  
29.
  • Nicolas, Aude, et al. (författare)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • Ingår i: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
30.
  • Nordin, Angelica, et al. (författare)
  • Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation : a large multinational screening study
  • 2017
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Informa UK Limited. - 2167-8421 .- 2167-9223. ; 18:3-4, s. 256-264
  • Tidskriftsartikel (refereegranskat)abstract
    • A large GGGGCC-repeat expansion mutation (HREM) in C9orf72 is the most common known cause of ALS and FTD in European populations. Sequence variations immediately downstream of the HREM region have previously been observed and have been suggested to be one reason for difficulties in interpreting RP-PCR data. Our objective was to determine the properties of these sequence variations with regard to prevalence, the range of variation, and effect on disease prognosis. We screened a multi-national cohort (n = 6981) for the HREM and samples with deviant RP-PCR curves were identified. The deviant samples were subsequently sequenced to determine sequence alteration. Our results show that in the USA and European cohorts (n = 6508) 10.7% carried the HREM and 3% had a sequence variant, while no HREM or sequence variants were observed in the Japanese cohort (n = 473). Sequence variations were more common on HREM alleles; however, certain population specific variants were associated with a non-expanded allele. In conclusion, we identified 38 different sequence variants, most located within the first 50 bp downstream of the HREM region. Furthermore, the presence of an HREM was found to be coupled to a lower age of onset and a shorter disease survival, while sequence variation did not have any correlation with these parameters.
  •  
31.
  • Oeckl, Patrick, et al. (författare)
  • Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase
  • 2019
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 90:1, s. 4-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate the role of neuroinflammation in asymptomatic and symptomatic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mutation carriers.Methods: The neuroinflammatory markers chitotriosidase 1 (CHIT1), YKL-40 and glial fibrillary acidic protein (GFAP) were measured in cerebrospinal fluid (CSF) and blood samples from asymptomatic and symptomatic ALS/FTD mutation carriers, sporadic cases and controls by ELISA.Results: CSF levels of CHIT1, YKL-40 and GFAP were unaffected in asymptomatic mutation carriers (n=16). CHIT1 and YKL-40 were increased in gALS (p<0.001, n=65) whereas GFAP was not affected. Patients with ALS carrying a CHIT1 polymorphism had lower CHIT1 concentrations in CSF (-80%) whereas this polymorphism had no influence on disease severity. In gFTD (n=23), increased YKL-40 and GFAP were observed (p<0.05), whereas CHIT1 was nearly not affected. The same profile as in gALS and gFTD was observed in sALS (n=64/70) and sFTD (n=20/26). CSF and blood concentrations correlated moderately (CHIT1, r=0.51) to weak (YKL-40, r=0.30, GFAP, r=0.39). Blood concentrations of these three markers were not significantly altered in any of the groups except CHIT1 in gALS of the Ulm cohort (p<0.05).Conclusion: Our data indicate that neuroinflammation is linked to the symptomatic phase of ALS/FTD and shows a similar pattern in sporadic and genetic cases. ALS and FTD are characterised by a different neuroinflammatory profile, which might be one driver of the diverse presentations of the ALS/FTD syndrome.
  •  
32.
  • Osmanovic, Alma, et al. (författare)
  • Heterozygous DHTKD1 Variants in Two European Cohorts of Amyotrophic Lateral Sclerosis Patients
  • 2022
  • Ingår i: Genes. - : MDPI. - 2073-4425. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive upper and lower motor neuron (LMN) loss. As ALS and other neurodegenerative diseases share genetic risk factors, we performed whole-exome sequencing in ALS patients focusing our analysis on genes implicated in neurodegeneration. Thus, variants in the DHTKD1 gene encoding dehydrogenase E1 and transketolase domain containing 1 previously linked to 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth (CMT) disease type 2, and spinal muscular atrophy (SMA) were identified. In two independent European ALS cohorts (n = 643 cases), 10 sporadic cases of 225 (4.4%) predominantly sporadic patients of cohort 1, and 12 familial ALS patients of 418 (2.9%) ALS families of cohort 2 harbored 14 different rare heterozygous DHTKD1 variants predicted to be deleterious. Four DHTKD1 variants were previously described pathogenic variants, seven were recurrent, and eight were located in the E1_dh dehydrogenase domain. Nonsense variants located in the E1_dh domain were significantly more prevalent in ALS patients versus controls. The phenotype of ALS patients carrying DHTKD1 variants partially overlapped with CMT and SMA by presence of sensory impairment and a higher frequency of LMN-predominant cases. Our results argue towards rare heterozygous DHTKD1 variants as potential contributors to ALS phenotype and, possibly, pathogenesis.
  •  
33.
  • Park, Julien H., et al. (författare)
  • The motor system is exceptionally vulnerable to absence of the ubiquitously expressed superoxide dismutase-1
  • 2023
  • Ingår i: Brain Communications. - : Oxford University Press. - 2632-1297. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs∗11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs∗11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.
  •  
34.
  • Rosenbohm, Angela, et al. (författare)
  • Can lesions to the motor cortex induce amyotrophic lateral sclerosis?
  • 2014
  • Ingår i: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 261:2, s. 283-290
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent staging effort for amyotrophic lateral sclerosis (ALS) has demonstrated that the TDP-43 neuropathology may initiate focally in the motor cortex in the majority of patients. We searched our data bank for patients with lesions of the motor cortex which preceded disease onset. We performed a search of our patient- and MRI-data bank and screened 1,835 patients with amyotrophic lateral sclerosis for frontal lobe/motor cortex lesions. We found 18 patients with definite ALS who had documented and defined lesions of the motor cortex, which preceded the initial ALS symptoms by 8-42 years. In the vast majority (15/18) of the patients, the onset of ALS was closely related to the focal lesion since it started in a body region reflecting the damaged cortical area. The findings suggest that initial lesions to the motor cortex may be a contributing initiating factor in some patients with ALS or determine the site of onset in individuals pre-disposed to ALS.
  •  
35.
  • Schrader, Tina A., et al. (författare)
  • PEX11β and FIS1 cooperate in peroxisome division independent of Mitochondrial Fission Factor
  • 2022
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 135:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome membrane dynamics and division are essential to adapt the peroxisomal compartment to cellular needs. The peroxisomal membrane protein PEX11β, and the tail-anchored adaptor proteins FIS1 (mitochondrial fission protein 1) and MFF (mitochondrial fission factor), which recruit the fission GTPase DRP1 (dynamin-related protein 1) to both peroxisomes and mitochondria, are key factors of peroxisomal division. The current model suggests MFF is essential for peroxisome division, whereas the role of FIS1 is unclear. Here, we reveal that PEX11β can promote peroxisome division in the absence of MFF in a DRP1- and FIS1-dependent manner. We also demonstrate that MFF permits peroxisome division independent of PEX11β and restores peroxisome morphology in PEX11β-deficient patient cells. Moreover, targeting of PEX11β to mitochondria induces mitochondrial division indicating the potential for PEX11β to modulate mitochondrial dynamics. Our findings suggest the existence of an alternative, MFF-independent pathway in peroxisome division and report a function for FIS1 in peroxisome division.
  •  
36.
  • Steinacker, Petra, et al. (författare)
  • Neurofilaments in the diagnosis of motoneuron diseases : a prospective study on 455 patients
  • 2016
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 87:1, s. 12-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Biomarkers for the diagnosis of motoneuron diseases (MND) are urgently needed to improve the diagnostic pathway, patient stratification and monitoring. The aim of this study was to validate candidate markers for MND in cerebrospinal fluid (CSF) and specify cut-offs based on large patient cohorts by especially considering patients who were seen under the initial differential diagnosis (MND mimics). Methods In a prospective study, we investigated CSF of 455 patients for neurofilament light chain (NfL), phosphorylated heavy chain (pNfH), tau protein (Tau) and phospho-tau protein (pTau). Analysed cohorts included patients with apparently sporadic and familial amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) (MND, n=253), MND mimics (n=85) and neurological control groups. Cut-off values were specified, and diagnostic performance and correlation with progression were analysed. Results Nfs were significantly higher in the MND group compared to the control groups, whereas Tau and pTau did not differ. At a cut-off level of 2200 pg/mL for NfL, a 77% diagnostic sensitivity (CI 71% to 82%), 85% specificity (CI 79% to 90%) and 87% positive predictive value (PPV) (CI 81% to 91%) were achieved. For pNfH, we calculated 83% sensitivity (CI 78% to 88%), 77% specificity (CI 71% to 83%) and 82% PPV (CI 77% to 86%) at 560 pg/mL. There were no significant differences between sporadic and genetic ALS or PLS. Nf levels were elevated at early disease stage, and correlated moderately with MND progression and duration. Conclusions Neurofilaments in CSF have a high relevance for the differential diagnosis of MNDs and should be included in the diagnostic work-up of patients. Their value as prognostic markers should be investigated further.
  •  
37.
  • Tazelaar, Gijs H. P., et al. (författare)
  • Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort
  • 2019
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 74, s. 234.e9-234.e15
  • Tidskriftsartikel (refereegranskat)abstract
    • NIPA1 (nonimprinted in Prader-Willi/Angelman syndrome 1) mutations are known to cause hereditary spastic paraplegia type 6, a neurodegenerative disease that phenotypically overlaps to some extent with amyotrophic lateral sclerosis (ALS). Previously, a genomewide screen for copy number variants found an association with rare deletions in NIPA1 and ALS, and subsequent genetic analyses revealed that long (or expanded) polyalanine repeats in NIPA1 convey increased ALS susceptibility. We set out to perform a large-scale replication study to further investigate the role of NIPA1 polyalanine expansions with ALS, in which we characterized NIPA1 repeat size in an independent international cohort of 3955 patients with ALS and 2276 unaffected controls and combined our results with previous reports. Meta-analysis on a total of 6245 patients with ALS and 5051 controls showed an overall increased risk of ALS in those with expanded (>8) GCG repeat length (odds ratio = 1.50, p = 3.8×10−5). Together with previous reports, these findings provide evidence for an association of an expanded polyalanine repeat in NIPA1 and ALS.
  •  
38.
  • van Doormaal, Perry T. C., et al. (författare)
  • The role of de novo mutations in the development of amyotrophic lateral sclerosis
  • 2017
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 38:11, s. 1534-1541
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 x 10(-15)). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk.
  •  
39.
  • van Rheenen, Wouter, et al. (författare)
  • Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1043-1048
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1-10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
  •  
40.
  • Volk, Alexander E., et al. (författare)
  • Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Medizinische Genetik. - : Springer Berlin/Heidelberg. - 1863-5490 .- 0936-5931. ; 30:2, s. 252-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease, affecting the upper and/or lower motor neurons. However, extramotor symptoms can also occur; cognitive deficits are present in more than 40% of patients and 5-8% of ALS patients develop frontotemporal dementia. There is no effective treatment for ALS and median survival is 2-3 years after onset.Amyotrophic lateral sclerosis is a genetically heterogeneous disorder with monogenic forms as well as complex genetic etiology. Currently, complex genetic risk factors are of minor interest for routine diagnostic testing or counseling of patients and their families. By contrast, a monogenic cause can be identified in 70% of familial and 10% of sporadic ALS cases. The most frequent genetic cause is a noncoding hexanucleotide repeat expansion in the C9orf72 gene. In recent years, high-throughput sequencing technologies have helped to identify additional monogenic and complex risk factors of ALS.Genetic counseling should be offered to all ALS patients and their first- and possibly second-degree relatives, and should include information about the possibilities and limitations of genetic testing. Routine diagnostic testing should at least encompass the most frequently mutated disease genes (C9orf72, SOD1, TDP-43, FUS). Targeted sequencing approaches including further disease genes may be applied. Caution is warranted as the C9orf72 repeat expansion cannot be detected by routine sequencing technologies and testing by polymerase chain reaction (PCR) is failure-prone.Predictive testing is possible in families in which a genetic cause has been identified, but the limitations of genetic testing (i.aEuroe., the problems of incomplete penetrance, variable expressivity and possible oligogenic inheritance) have to be explained to the families.
  •  
41.
  • Weishaupt, Jochen H, et al. (författare)
  • A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany
  • 2013
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 34:5, s. 1516.e9-1516.e15
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the optineurin (OPTN) gene have been associated with normal tension glaucoma and with amyotrophic lateral sclerosis (ALS). Here, we screened German familial ALS cases for OPTN mutations to gain additional insight into the spectrum and pathogenic relevance of this gene for ALS. One hundred familial German ALS cases and 148 control subjects were screened for OPTN mutations by sequence analysis of the complete OPTN coding sequence, and phenotypes of OPTN mutant patients were described. We identified a novel heterozygous truncating OPTN mutation p.Lys440Asnfs*8 in 1 ALS family with an aggressive ALS disease phenotype. This mutation abolishes protein domains crucial for nuclear factor kappa B signaling. Moreover, we detected 3 different nonsynonymous sequence variants, which have been described previously as risk factors for primary retinal ganglion cell degeneration in normal tension glaucoma. Two of them were detected on the same allele in a family that also carries a p.Asn352Ser disease mutation in the ALS gene TARDBP. All OPTN mutant patients presented with typical spinal onset ALS. Taken together, we detected a novel truncating OPTN mutation associated with an aggressive form of ALS and confirmed that OPTN mutations are a rare cause of ALS. In addition our data suggest that in some cases plausibly more than 1 mutation in OPTN or another ALS gene might be needed to cause ALS. Finally, our findings show that motoneurons and retinal ganglion cells, which are both projecting central nervous system neurons, might share common susceptibility factors. (C) 2013 Elsevier Inc. All rights reserved.
  •  
42.
  • Weydt, Patrick, et al. (författare)
  • Neurofilament Levels as Biomarkers in Asymptomatic and Symptomatic Familial Amyotrophic Lateral Sclerosis
  • 2016
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 79:1, s. 152-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilaments are elevated in the cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients. However, timing of this increase is unknown. To characterize the premanifest disease phase, we performed a cross-sectional study on asymptomatic (n=12) and symptomatic (n=64) ALS mutation carriers and family controls (n=19). Neurofilaments NF-L (neurofilament-light chain) and pNF-H (phosphorylated neurofilament-heavy chain) are normal before symptom onset and increased by at least an order of magnitude at early symptom onset in CSF (pNF-H) or serum and CSF (NF-L). Thus, blood and CSF neurofilament levels are linked to the symptomatic phase of ALS and might serve as objective markers of structural damage to the nervous system.
  •  
43.
  • Yilmaz, Rüstem, et al. (författare)
  • SQSTM1/p62 variants in 486 patients with familial ALS from Germany and Sweden
  • 2020
  • Ingår i: Neurobiology of Aging. - : ELSEVIER SCIENCE INC. - 0197-4580 .- 1558-1497. ; 87, s. 139.e9-139.e15
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies reported amyotrophic lateral sclerosis (ALS)-linked mutations in TBK1, OPTN, VCP, UBQLN2, and SQSTM1 genes encoding proteins involved in autophagy. SQSTM1 was originally identified by a candidate gene approach because it encodes p62, a multifunctional protein involved in protein degradation both through proteasomal regulation and autophagy. Both p62 and optineurin (encoded by OPTN) are direct interaction partners and substrates of TBK1, and these 3 proteins form the core of a genetic and functional network that may connect autophagy with ALS. Considering the molecular and conceptual relevance of the TBK1/OPTN/SQSTM1 "triangle," we here performed a targeted screen for SQSTM1 variants in 486 patients with familial ALS from Germany and Sweden by analyzing whole-exome sequencing data. We report 9 novel and 5 previously reported rare variants in SQSTM1 and discuss the current evidence for SQSTM1 as a primary disease gene for ALS. We conclude that the evidence for causality remains vague for SQSTM1 and is weaker than for the other autophagy genes, for example, TBK1 and OPTN.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-43 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy