SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wenner David) "

Sökning: WFRF:(Wenner David)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Xiuwen, et al. (författare)
  • Adhesive Cements That Bond Soft Tissue Ex Vivo
  • 2019
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 12:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to evaluate the soft tissue bond strength of a newly developed, monomeric, biomimetic, tissue adhesive called phosphoserine modified cement (PMC). Two types of PMCs were evaluated using lap shear strength (LSS) testing, on porcine skin: a calcium metasilicate (CS1), and alpha tricalcium phosphate (alpha TCP) PMC. CS1 PCM bonded strongly to skin, reaching a peak LSS of 84, 132, and 154 KPa after curing for 0.5, 1.5, and 4 h, respectively. Cyanoacrylate and fibrin glues reached an LSS of 207 kPa and 33 kPa, respectively. alpha TCP PMCs reached a final LSS of approximate to 110 kPa. In soft tissues, stronger bond strengths were obtained with alpha TCP PMCs containing large amounts of amino acid (70-90 mol%), in contrast to prior studies in calcified tissues (30-50 mol%). When alpha TCP particle size was reduced by wet milling, and for CS1 PMCs, the strongest bonding was obtained with mole ratios of 30-50% phosphoserine. While PM-CPCs behave like stiff ceramics after setting, they bond to soft tissues, and warrant further investigation as tissue adhesives, particularly at the interface between hard and soft tissues.
  •  
2.
  •  
3.
  • Procter, Philip, et al. (författare)
  • Gluing Living Bone Using a Biomimetic Bioadhesive : From Initial Cut to Final Healing
  • 2021
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media S.A.. - 2296-4185. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporotic fractures are a growing issue due to the increasing incidence of osteoporosis worldwide. High reoperation rates in osteoporotic fractures call for investigation into new methods in improving fixation of osteoporotic bones. In the present study, the strength of a recently developed bone bioadhesive, OsStictm, was evaluated in vivo using a novel bone core assay in a murine animal model at 0, 3, 7, 14, 28, and 42 days. Histology and micro-CT were obtained at all time points, and the mean peak pull-out force was assessed on days 0–28. The adhesive provided immediate fixation to the bone core. The mean peak bone core pull-out force gradually decreased from 6.09 N (σ 1.77 N) at day 0 to a minimum of 3.09 N (σ 1.08 N) at day 7, recovering to 6.37 N (σ 4.18 N) by day 28. The corresponding fibrin (Tisseel) control mean peak bone core pull-out characteristic was 0.27 N (σ 0.27 N) at day 0, with an abrupt increase from 0.37 N (σ 0.28) at day 3, 6.39 N (σ 5.09 N) at day 7, and continuing to increase to 11.34 N (σ 6.5 N) by day 28. The bone cores failed either through core pull-out or by the cancellous part of the core fracturing. Overall, the adhesive does not interrupt healing with pathological changes or rapid resorption. Initially, the adhesive bonded the bone core to the femur, and over time, the adhesive was replaced by a vascularised bone of equivalent quality and quantity to the original bone. At the 42 day time point, 70% of the adhesive in the cancellous compartment and 50% in the cortical compartment had been replaced. The adhesive outwith the bone shell was metabolized by cells that are only removing the material excess with no ectopic bone formation. It is concluded that the adhesive is not a physical and biochemical barrier as the bone heals through the adhesive and is replaced by a normal bone tissue. This adhesive composition meets many of the clinical unmet needs expressed in the literature, and may, after further preclinical assessments, have potential in the repair of bone and osteochondral fragments.
  •  
4.
  • Pujari-Palmer, Michael, et al. (författare)
  • A Novel Class of Injectable Bioceramics That Glue Tissues and Biomaterials
  • 2018
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium phosphate cements (CPCs) are clinically effective void fillers that are capable of bridging calcified tissue defects and facilitating regeneration. However, CPCs are completely synthetic/inorganic, unlike the calcium phosphate that is found in calcified tissues, and they lack an architectural organization, controlled assembly mechanisms, and have moderate biomechanical strength, which limits their clinical effectiveness. Herein, we describe a new class of bioinspired CPCs that can glue tissues together and bond tissues to metallic and polymeric biomaterials. Surprisingly, alpha tricalcium phosphate cements that are modified with simple phosphorylated amino acid monomers of phosphoserine (PM-CPCs) bond tissues up to 40-fold stronger (2.5-4 MPa) than commercial cyanoacrylates (0.1 MPa), and 100-fold stronger than surgical fibrin glue (0.04 MPa), when cured in wet-field conditions. In addition to adhesion, phosphoserine creates other novel properties in bioceramics, including a nanoscale organic/inorganic composite microstructure, and templating of nanoscale amorphous calcium phosphate nucleation. PM-CPCs are made of the biocompatible precursors calcium, phosphate, and amino acid, and these represent the first amorphous nano-ceramic composites that are stable in liquids.
  •  
5.
  • Robo, Céline, et al. (författare)
  • Functional properties of low-modulus PMMA bone cements containing linoleic acid
  • 2021
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Acrylic bone cements modified with linoleic acid are a promising low-modulus alternative to traditional high-modulus bone cements. However, several key properties remain unexplored, including the effect of autoclave sterilization and the potential use of low-modulus cements in other applications than vertebral augmentation. In this work, we evaluate the effect of sterilization on the structure and stability of linoleic acid, as well as in the handling properties, glass transition temperature, mechanical properties, and screw augmentation potential of low-modulus cement containing the fatty acid. Neither 1H NMR nor SFC-MS/MS analysis showed any detectable differences in autoclaved linoleic acid compared to fresh one. The peak polymerization temperature of the low-modulus cement was much lower (28–30 °C) than that of the high-modulus cement (67 °C), whereas the setting time remained comparable (20–25 min). The Tg of the low-modulus cement was lower (75–78 °C) than that of the high-stiffness cement (103 °C). It was shown that sterilization of linoleic acid by autoclaving did not significantly affect the functional properties of low-modulus PMMA bone cement, making the component suitable for sterile production. Ultimately, the low-modulus cement exhibited handling and mechanical properties that more closely match those of osteoporotic vertebral bone with a screw holding capacity of under 2000 N, making it a promising alternative for use in combination with orthopedic hardware in applications where high-stiffness augmentation materials can result in undesired effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy