SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wernli Heini) "

Sökning: WFRF:(Wernli Heini)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, Linn, et al. (författare)
  • Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition
  • 2022
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 127:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August–September 2018 combined with air parcel source analysis. We provide direct experimental evidence that Aitken mode particles (particles with diameters ≲70 nm) significantly contribute to cloud condensation nuclei (CCN) or cloud droplet residuals, especially after the freeze-up of the sea ice in the transition toward fall. These Aitken mode particles were associated with air that spent more time over the pack ice, while size distributions dominated by accumulation mode particles (particles with diameters ≳70 nm) showed a stronger contribution of oceanic air and slightly different source regions. This was accompanied by changes in the average chemical composition of the accumulation mode aerosol with an increased relative contribution of organic material toward fall. Addition of aerosol mass due to aqueous-phase chemistry during in-cloud processing was probably small over the pack ice given the fact that we observed very similar particle size distributions in both the whole-air and cloud droplet residual data. These aerosol–cloud interaction observations provide valuable insight into the origin and physical and chemical properties of CCN over the pristine central Arctic Ocean.
  •  
2.
  • Murto, Sonja, 1992-, et al. (författare)
  • Extreme surface energy budget anomalies in the high Arctic in winter
  • 2023
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 36:11, s. 3591-3609
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades, the Arctic has warmed faster than the global mean, especially during winter. This has been attributed to various causes, with recent studies highlighting the importance of enhanced downward infrared radiation associated with anomalous inflow of warm, moist air from lower latitudes. Here, we study wintertime surface energy budget (SEB) anomalies over Arctic sea ice on synoptic time scales, using ERA5 (1979–2020). We introduce a new algorithm to identify areas with extreme, positive daily mean SEB anomalies and connect them to form spatiotemporal life cycle events. Most of these events are associated with large-scale inflow from the Atlantic and Pacific Oceans, driven by poleward deflection of the storm track and blocks over northern Eurasia and Alaska. Events originate near the ice edge, where they have roughly equal contributions of net longwave radiation and turbulent fluxes to the positive SEB anomaly. As the events move farther into the Arctic, SEB anomalies decrease due to weakening sensible and latent heat-flux anomalies, while the surface temperature anomaly increases toward the peak of the events along with the downward longwave radiation anomaly. Due to these temporal and spatial differences, the largest SEB anomalies are not always related to strongest surface warming. Thus, studying temperature anomalies alone might not be sufficient to determine sea ice changes. This study highlights the importance of turbulent fluxes in driving SEB anomalies and downward longwave radiation in determining local surface warming. Therefore, both processes need to be accurately represented in climate models.
  •  
3.
  • Murto, Sonja, et al. (författare)
  • Extreme Surface Energy Budget Anomalies in the High Arctic in Winter
  • 2023
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 36:11, s. 3591-3609
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades, the Arctic has warmed faster than the global mean, especially during winter. This has been attributed to various causes, with recent studies highlighting the importance of enhanced downward infrared radiation associated with anomalous inflow of warm, moist air from lower latitudes. Here, we study wintertime surface energy budget (SEB) anomalies over Arctic sea ice on synoptic time scales, using ERA5 (1979–2020). We introduce a new algorithm to identify areas with extreme, positive daily mean SEB anomalies and connect them to form spatiotemporal life cycle events. Most of these events are associated with large-scale inflow from the Atlantic and Pacific Oceans, driven by poleward deflection of the storm track and blocks over northern Eurasia and Alaska. Events originate near the ice edge, where they have roughly equal contributions of net longwave radiation and turbulent fluxes to the positive SEB anomaly. As the events move farther into the Arctic, SEB anomalies decrease due to weakening sensible and latent heat-flux anomalies, while the surface temperature anomaly increases toward the peak of the events along with the downward longwave radiation anomaly. Due to these temporal and spatial differences, the largest SEB anomalies are not always related to strongest surface warming. Thus, studying temperature anomalies alone might not be sufficient to determine sea ice changes. This study highlights the importance of turbulent fluxes in driving SEB anomalies and downward longwave radiation in determining local surface warming. Therefore, both processes need to be accurately represented in climate models.Significance StatementMechanisms behind wintertime rapid Arctic warming and sea ice growth changes are not well understood. While much is known about the impact of radiative fluxes on both sea ice variability and surface warming, the relative importance of radiative and turbulent fluxes remains unclear. The purpose of this study is to clarify what controls surface energy budget (SEB) anomalies over sea ice. Along the life cycle of synoptic-scale events, positive SEB anomalies are shown to decrease and surface temperature anomalies increase after their onset. Additionally, variations in SEB anomalies are primarily controlled by turbulent fluxes, while downward longwave radiative fluxes are mainly responsible for surface temperature variations. These results highlight the need for accurate representations of these fluxes for predicting future Arctic climate.
  •  
4.
  •  
5.
  • Porter, Grace C.E., et al. (författare)
  • Highly Active Ice-Nucleating Particles at the Summer North Pole
  • 2022
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 127:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >−20°C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy