SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wernstedt Asterholm Ingrid 1978) "

Sökning: WFRF:(Wernstedt Asterholm Ingrid 1978)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lager, Susanne, 1978, et al. (författare)
  • Perinatal lack of maternal IL-6 promotes increased adiposity during adulthood in mice.
  • 2011
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 152:4, s. 1336-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The perinatal environment appears important in establishing metabolic phenotypes in adulthood. Mice deficient in IL-6 (IL-6(-/-)) tend to develop mature-onset obesity, but it is unknown whether perinatal exposure to IL-6 produced by the dam influences the metabolism of adult offspring. To address this issue, we monitored IL-6(-/-) offspring of IL-6(-/-) or IL-6(+/-) dams, as well as wild-type (WT) mice. At adult age, IL-6(-/-) mice weighed significantly more and had more body fat than WT mice, regardless of maternal genotype, and had lower insulin sensitivity. This phenotype was more pronounced in IL-6(-/-) offspring of IL-6(-/-) dams, because they gained weight significantly faster than IL-6(-/-) offspring of IL-6(+/-) dams and had more body fat and higher serum leptin levels at an earlier age. The leptin content was 2-fold higher in milk from IL-6(-/-) than WT dams. However, cross-fostering IL-6(-/-) mice with WT dams did not alter body weight, body composition, or adipocyte size at adult age compared with IL-6(-/-) mice fostered by IL-6(-/-) dams. Conversely, WT mice fostered by IL-6(-/-) dams weighed significantly more than those fostered by WT dams and had more body fat, larger adipocytes, and altered hypothalamic gene expression. We conclude that body fat of adult mice can be increased by perinatal exposure to factors affected by lack of maternal IL-6.
  •  
2.
  • Xia, Ying, et al. (författare)
  • Knockout of STE20-type kinase TAOK3 does not attenuate diet-induced NAFLD development in mice
  • 2023
  • Ingår i: Molecular Medicine. - 1076-1551. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveNon-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity.MethodsTaok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice.ResultsTAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/-vs. wild-type mice.ConclusionsIn contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.
  •  
3.
  • An, Y. A., et al. (författare)
  • Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity
  • 2019
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:12, s. 1243-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial function in white adipose tissue (WAT) is an important yet understudied aspect of adipocyte biology. Here, we report a role for amyloid precursor protein (APP) in compromising WAT mitochondrial function through a high-fat diet (HFD)-induced, unconventional mis-localization to mitochondria that further promotes obesity. In humans and mice, obese conditions induce substantial APP production in WAT and APP enrichment in mitochondria. Mechanistically, HFD-induced dysregulation of signal recognition particle subunit 54c is responsible for the mis-targeting of APP to adipocyte mitochondria. Mis-localized APP blocks the protein import machinery, leading to mitochondrial dysfunction in WAT. Mice overexpressing adipocyte-specific and mitochondria-targeted APP display increased body mass and reduced insulin sensitivity, along with dysfunctional WAT, owing to a dramatic hypertrophic program in adipocytes. Elimination of adipocyte APP rescues HFD-impaired mitochondrial function with considerable protection from weight gain and systemic metabolic deficiency. Our data highlight an important role for APP in modulating WAT mitochondrial function and obesity-associated metabolic dysfunction.
  •  
4.
  • Anderberg, Rozita H, 1976, et al. (författare)
  • Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:4, s. 1062-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT2A) and 5-HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT2A, but surprisingly not the 5-HT2C, receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation.
  •  
5.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • Adipocyte-specific ablation of the Ca2+ pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue.
  • 2022
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 63
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the endoplasmic retitculum (ER) and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes.SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology.We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while the glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in fibroblast growth factor 21 (FGF21), increased mitochondrial uncoupling protein 1 (UCP1) levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls.Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.
  •  
6.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • NRF2 is essential for adaptative browning of white adipocytes.
  • 2023
  • Ingår i: Redox biology. - : Elsevier. - 2213-2317. ; 68
  • Tidskriftsartikel (refereegranskat)abstract
    • White adipose tissue browning, defined by accelerated mitochondrial metabolism and biogenesis, is considered a promising mean to treat or prevent obesity-associated metabolic disturbances. We hypothesize that redox stress acutely leads to increased production of reactive oxygen species (ROS), which activate electrophile sensor nuclear factor erythroid 2-Related Factor 2 (NRF2) that over time results in an adaptive adipose tissue browning process. To test this, we have exploited adipocyte-specific NRF2 knockout mice and cultured adipocytes and analyzed time- and dose-dependent effect of NAC and lactate treatment on antioxidant expression and browning-like processes. We found that short-term antioxidant treatment with N-acetylcysteine (NAC) induced reductive stress as evident from increased intracellular NADH levels, increased ROS-production, reduced oxygen consumption rate (OCR), and increased NRF2 levels in white adipocytes. In contrast, and in line with our hypothesis, longer-term NAC treatment led to a NRF2-dependent browning response. Lactate treatment elicited similar effects as NAC, and mechanistically, these NRF2-dependent adipocyte browning responses in vitro were mediated by increased heme oxygenase-1 (HMOX1) activity. Moreover, this NRF2-HMOX1 axis was also important for β3-adrenergic receptor activation-induced adipose tissue browning in vivo. In conclusion, our findings show that administration of exogenous antioxidants can affect biological function not solely through ROS neutralization, but also through reductive stress. We also demonstrate that NRF2 is essential for white adipose tissue browning processes.
  •  
7.
  • Benrick, Anna, 1979, et al. (författare)
  • Adiponectin protects against development of metabolic disturbances in a PCOS mouse model
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Adiponectin, together with adipocyte size, is the strongest factor associated with insulin resistance in women with polycystic ovary syndrome (PCOS). This study investigates the causal relationship between adiponectin levels and metabolic and reproductive functions in PCOS. Prepubertal mice overexpressing adiponectin from adipose tissue (APNtg), adiponectin knockouts (APNko), and their wild-type (WT) littermate mice were continuously exposed to placebo or dihydrotestosterone (DHT) to induce PCOS-like traits. As expected, DHT exposure led to reproductive dysfunction, as judged by continuous anestrus, smaller ovaries with a decreased number of corpus luteum, and an increased number of cystic/atretic follicles. A two-way between-groups analysis showed that there was a significant main effect for DHT exposure, but not for genotype, indicating adiponectin does not influence follicle development. Adiponectin had, however, some protective effects on ovarian function. Similar to in many women with PCOS, DHT exposure led to reduced adiponectin levels, larger adipocyte size, and reduced insulin sensitivity in WTs. APNtg mice remained metabolically healthy despite DHT exposure, while APNko-DHT mice were even more insulin resistant than their DHT-exposed littermate WTs. DHT exposure also reduced the mRNA expression of genes involved in metabolic pathways in gonadal adipose tissue of WT and APNko, but this effect of DHT was not observed in APNtg mice. Moreover, APNtg-DHT mice displayed increased pancreatic mRNA levels of insulin receptors, Pdx1 and Igf1R, suggesting adiponectin stimulates beta cell viability/hyperplasia in the context of PCOS. In conclusion, adiponectin improves metabolic health but has only minor effects on reproductive functions in this PCOS-like mouse model.
  •  
8.
  • Benrick, Anna, 1979, et al. (författare)
  • Elevated interlukin-6 levels as a consequence, not the cause of obesity and insulin resistance
  • 2013
  • Ingår i: Interleukin-6: Genetics, Clinical Applications and Role in Disease. - : Nova Science Publishers, Inc.. - 9781624175923 ; , s. 197-210
  • Bokkapitel (refereegranskat)abstract
    • Several population-based studies have reported that serum interleukin-6 (IL-6) levels are positively correlated with obesity and insulin resistance. This has lead to the hypothesis of a causal relationship between elevated IL-6 levels and insulin resistance. This notion is further strengthened by the observation that obesity is associated with a chronic low-grade inflammation in adipose tissue, which is postulated to be causal in the development of insulin resistance and type-2 diabetes. A recent study of weight gain demonstrates however that insulin resistance develops even in the absence of a significant signs of adipose inflammation. This suggests that inflammation in adipose tissue occurs subsequent to peripheral insulin resistance in humans. More and more data also supports the hypothesis that increased adiposity in itself, independent of the increased IL-6 levels, is a predictor of diabetes risk. IL-6 levels tend to also increase with age and since the incidence of insulin resistance and type-2 diabetes also increases with age, this could explain some of the observed correlations. Taken together, the above studies provide an association of metabolic disorder with IL-6, but not causation. An emerging concept is that IL-6 appears to have different effects on different tissues, and the effects depend on whether the IL-6 levels are acutely or chronically elevated. Given the opposing views of the impact of IL-6 on glucose homeostasis, many investigations have aimed at clarifying the effects of IL-6 on insulin action. A recent study shows that IL-6, either released from skeletal muscle or adipose tissue, induces GLP-1 release, leading to insulin secretion, improved beta-cell function and glycemic control. Still, the causal relationships between IL-6, obesity and type-2 diabetes remain a matter of debate. This review summarizes the current data on IL-6, supporting an association, but not a causative relationship, between IL-6 and metabolic disturbances. © 2013 Nova Science Publishers, Inc. All rights reserved.
  •  
9.
  • Benrick, Anna, 1979, et al. (författare)
  • Interleukin-6 gene knockout influences energy balance regulating peptides in the hypothalamic paraventricular and supraoptic nuclei.
  • 2009
  • Ingår i: Journal of neuroendocrinology. - : Wiley. - 1365-2826 .- 0953-8194. ; 21:7, s. 620-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 is a pro-inflammatory cytokine that also affects metabolic function because IL-6 depleted (IL-6(-/-)) mice develop late-onset obesity. IL-6 appears to act in the central nervous system, presumably in the hypothalamus, to increase energy expenditure that appears to involve stimulation of the sympathetic nervous system. In the present study, we explored possible central mechanisms for the effects exerted by IL-6 on body fat. Therefore, we measured the effects of IL-6 depletion in IL-6(-/-) mice on expression of key hypothalamic peptide genes involved in energy balance by the real time polymerase chain reaction. Additionally, co-localisation between such peptides and IL-6 receptor alpha was investigated by immunohistochemistry. IL-6 deficiency decreased the expression of several peptides found in the paraventricular nucleus (PVN), which is a nucleus that has been attributed an adipostatic function. For example, corticotrophin-releasing hormone (CRH), which is reported to stimulate the sympathetic nervous system, was decreased by 40% in older IL-6(-/-) mice. Oxytocin, which is reported to prevent obesity, was also decreased in older IL-6(-/-) animals, as was arginine vasopressin (AVP). The IL-6 receptor alpha was abundantly expressed in the PVN, but also in the supraoptic nucleus, and was shown to be co-expressed to a high extent with CRH, AVP, oxytocin and thyrotrophin-releasing hormone. These data indicate that depletion of endogenous IL-6, a body fat suppressing cytokine, is associated with the decreased expression of CRH and oxytocin (i.e. energy balance regulating peptides) as well as AVP in the PVN. Because IL-6 receptor alpha is co-expressed with CRH, oxytocin and AVP, IL-6 could stimulate the expression of these peptides directly.
  •  
10.
  • Benrick, Anna, 1979, et al. (författare)
  • Interleukin-6 mediates exercise-induced increase in insulin sensitivity in mice.
  • 2012
  • Ingår i: Experimental physiology. - : Wiley. - 1469-445X .- 0958-0670. ; 97:11 SI, s. 1224-1235
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-6 (IL-6) is released from working skeletal muscle during exercise. We investigated the acute and the long-term beneficial effects of IL-6 on exercise-induced glucose uptake in skeletal muscle and insulin sensitivity. The acute effect on exercise-induced glucose uptake was measured in IL-6 deficient (-/-) mice and wild type controls using a tracer technique. There was no difference in serum disappearance of 3H-2-deoxyglucose after a bolus dose of exercise between IL-6 -/- and wild type mice (13565 ± 426 vs. 14343 ± 1309 dpm*min/ml, p=0.5). The glucose uptake rate in the EDL muscle was however lower in IL-6 -/- compared to wildtype mice (398 ± 44 vs. 657 ± 41 nmol/g/min, p<0.01). In the long-term study, we monitored insulin sensitivity, serum retinol-binding protein-4 (RBP-4) levels, running activity, food intake, body weight and body composition in IL-6 -/- and wild type mice on a high-fat diet (HFD), with or without access to running wheels. In sedentary IL-6 -/- and wild type mice, HFD decreased insulin sensitivity (glucose AUC increased about 20% during an insulin tolerance test (ITT), p<0.05 for both genotypes vs. baseline) and led to a 30% increase in serum RBP-4 levels (p <0.01 for both genotypes vs. baseline). Wild type runners were protected against these effects of HFD and maintained their baseline insulin sensitivity and serum RBP-4 levels. In contrast, IL-6 -/- mice did not, to the same extent as wild types, benefit from running. IL-6 -/- runners had a similar decrease in insulin sensitivity as their sedentary littermates (glucose AUC during an ITT in runners vs. sedentary IL-6-/- HFD mice: 312 ± 14 vs. 340 ± 22 mmol*min/L, p=0.4) and displayed a 14% increase in serum RBP-4 as compared to baseline levels (p<0.01). Our results indicate that endogenous IL-6 contributes to the exercise-induced increase in insulin sensitivity, but only plays a minor role for glucose uptake into skeletal muscle during exercise.
  •  
11.
  • Brännmark, Cecilia, et al. (författare)
  • Adiponectin is secreted via caveolin 1-dependent mechanisms in white adipocytes
  • 2020
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 247:1, s. 25-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we have investigated the role of the protein caveolin 1 (Cav1) and caveolae in the secretion of the white adipocyte hormone adiponectin. Using mouse primary subcutaneous adipocytes genetically depleted of Cav1, we show that the adiponectin secretion, stimulated either adrenergically or by insulin, is abrogated while basal (unstimulated) release of adiponectin is elevated. Adiponectin secretion is similarly affected in wildtype mouse and human adipocytes where the caveolae structure was chemically disrupted. The altered ex vivo secretion in adipocytes isolated from Cav1 null mice is accompanied by lowered serum levels of the high-molecular weight (HMW) form of adiponectin, whereas the total concentration of adiponectin is unaltered. Interestingly, levels of HMW adiponectin are maintained in adipose tissue from Cav1-depleted mice, signifying that a secretory defect is present. The gene expression of key regulatory proteins known to be involved in cAMP/adrenergically triggered adiponectin exocytosis (the beta-3-adrenergic receptor and exchange protein directly activated by cAMP) remains intact in Cav1 null adipocytes. Microscopy and fractionation studies indicate that adiponectin vesicles do not co-localise with Cav1 but that some vesicles are associated with a specific fraction of caveolae. Our studies propose that Cav1 has an important role in secretion of HMW adiponectin, even though adiponectin-containing vesicles are not obviously associated with this protein. We suggest that Cav1, and/or the caveolae domain, is essential for the organisation of signalling pathways involved in the regulation of HMW adiponectin exocytosis, a function that is disrupted in Cav1/caveolae-depleted adipocytes.
  •  
12.
  • Chanclón, Belén, et al. (författare)
  • Peripancreatic adipose tissue protects against high-fat-diet-induced hepatic steatosis and insulin resistance in mice
  • 2020
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 44, s. 2323-2334
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/objectives Visceral adiposity is associated with increased diabetes risk, while expansion of subcutaneous adipose tissue may be protective. However, the visceral compartment contains different fat depots. Peripancreatic adipose tissue (PAT) is an understudied visceral fat depot. Here, we aimed to define PAT functionality in lean and high-fat-diet (HFD)-induced obese mice. Subjects/methods Four adipose tissue depots (inguinal, mesenteric, gonadal, and peripancreatic adipose tissue) from chow- and HFD-fed male mice were compared with respect to adipocyte size (n = 4-5/group), cellular composition (FACS analysis, n = 5-6/group), lipogenesis and lipolysis (n = 3/group), and gene expression (n = 6-10/group). Radioactive tracers were used to compare lipid and glucose metabolism between these four fat depots in vivo (n = 5-11/group). To determine the role of PAT in obesity-associated metabolic disturbances, PAT was surgically removed prior to challenging the mice with HFD. PAT-ectomized mice were compared to sham controls with respect to glucose tolerance, basal and glucose-stimulated insulin levels, hepatic and pancreatic steatosis, and gene expression (n = 8-10/group). Results We found that PAT is a tiny fat depot (similar to 0.2% of the total fat mass) containing relatively small adipocytes and many "non-adipocytes" such as leukocytes and fibroblasts. PAT was distinguished from the other fat depots by increased glucose uptake and increased fatty acid oxidation in both lean and obese mice. Moreover, PAT was the only fat depot where the tissue weight correlated positively with liver weight in obese mice (R = 0.65; p = 0.009). Surgical removal of PAT followed by 16-week HFD feeding was associated with aggravated hepatic steatosis (p = 0.008) and higher basal (p < 0.05) and glucose-stimulated insulin levels (p < 0.01). PAT removal also led to enlarged pancreatic islets and increased pancreatic expression of markers of glucose-stimulated insulin secretion and islet development (p < 0.05). Conclusions PAT is a small metabolically highly active fat depot that plays a previously unrecognized role in the pathogenesis of hepatic steatosis and insulin resistance in advanced obesity.
  •  
13.
  • Crewe, C., et al. (författare)
  • Deficient Caveolin-1 Synthesis in Adipocytes Stimulates Systemic Insulin-Independent Glucose Uptake via Extracellular Vesicles
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797. ; 71:12, s. 2496-2512
  • Tidskriftsartikel (refereegranskat)abstract
    • Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previ-ously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adi-pocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveo-lar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Further-more, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interest-ingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of neg-ative phenotypes to other organs by EVs.
  •  
14.
  • Gandasi, Nikhil, et al. (författare)
  • GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion
  • 2024
  • Ingår i: DIABETOLOGIA. - 0012-186X .- 1432-0428. ; 67:3, s. 528-546
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes.Methods We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36).Results GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by beta-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to omega-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content.Conclusions/interpretation We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.
  •  
15.
  • Grahnemo, Louise, et al. (författare)
  • Increased bone mass in a mouse model with low fat mass.
  • 2018
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 315:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice with impaired acute inflammatory responses within adipose tissue display reduced diet-induced fat mass gain associated with glucose intolerance and systemic inflammation. Therefore, acute adipose tissue inflammation is needed for a healthy expansion of adipose tissue. Because inflammatory disorders are associated with bone loss, we hypothesized that impaired acute adipose tissue inflammation leading to increased systemic inflammation results in a lower bone mass. To test this hypothesis, we used mice overexpressing an adenoviral protein complex - the receptor internalization and degradation (RID) complex that inhibits pro-inflammatory signaling - under the control of the aP2-promotor (RID tg mice), resulting in suppressed inflammatory signaling in adipocytes. As expected, RID tg mice had a lower high-fat diet-induced weight and fat mass gain and higher systemic inflammation than their littermate wild type controls. Contrary to our hypothesis, the RID tg mice had increased bone mass in long bones and vertebrae, affecting trabecular and cortical parameters, as well as improved humeral biomechanical properties. We did not find any differences in bone formation or resorption parameters as determined by histology or enzyme immunoassay. However, bone marrow adiposity, often negatively associated with bone mass, was decreased in male RID tg mice as determined by histological analysis of tibia. In conclusion, mice with reduced fat mass, due to impaired adipose tissue inflammation, have increased bone mass.
  •  
16.
  • Huth, Cornelia, et al. (författare)
  • Joint analysis of individual participants' data from 17 studies on the association of the IL6 variant -174G>C with circulating glucose levels, interleukin-6 levels, and body mass index.
  • 2009
  • Ingår i: Annals of medicine. - : Informa UK Limited. - 1365-2060 .- 0785-3890. ; 41:2, s. 128-38
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Several studies have investigated associations between the -174G>C single nucleotide polymorphism (rs1800795) of the IL6 gene and phenotypes related to type 2 diabetes mellitus (T2DM) but presented inconsistent results. AIMS: This joint analysis aimed to clarify whether IL6 -174G>C was associated with glucose and circulating interleukin-6 concentrations as well as body mass index (BMI). METHODS: Individual-level data from all studies of the IL6-T2DM consortium on Caucasian subjects with available BMI were collected. As study-specific estimates did not show heterogeneity (P>0.1), they were combined by using the inverse-variance fixed-effect model. RESULTS: The main analysis included 9440, 7398, 24,117, or 5659 non-diabetic and manifest T2DM subjects for fasting glucose, 2-hour glucose, BMI, or circulating interleukin-6 levels, respectively. IL6 -174 C-allele carriers had significantly lower fasting glucose (-0.091 mmol/L, P=0.014). There was no evidence for association between IL6 -174G>C and BMI or interleukin-6 levels, except in some subgroups. CONCLUSIONS: Our data suggest that C-allele carriers of the IL6 -174G>C polymorphism have lower fasting glucose levels on average, which substantiates previous findings of decreased T2DM risk of these subjects.
  •  
17.
  • Kim, Angela, et al. (författare)
  • Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes.
  • 2021
  • Ingår i: eLife. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.
  •  
18.
  • Komai, Ali, 1987, et al. (författare)
  • White Adipocyte Adiponectin Exocytosis Is Stimulated via beta(3)-Adrenergic Signaling and Activation of Epac1: Catecholamine Resistance in Obesity and Type 2 Diabetes
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:11, s. 3301-3313
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the physiological regulation of adiponectin exocytosis in health and metabolic disease by a combination of membrane capacitance patch-clamp recordings and biochemical measurements of short-term (30-min incubations) adiponectin secretion. Epinephrine or the beta(3)-adrenergic receptor (AR) agonist CL 316,243 (CL) stimulated adiponectin exocytosis/secretion in cultured 3T3-L1 and in primary subcutaneous mouse adipocytes, and the stimulation was inhibited by the Epac (Exchange Protein directly Activated by cAMP) antagonist ESI-09. The beta(3)AR was highly expressed in cultured and primary adipocytes, whereas other ARs were detected at lower levels. 3T3-L1 and primary adipocytes expressed Epac1, whereas Epac2 was undetectable. Adiponectin secretion could not be stimulated by epinephrine or CL in adipocytes isolated from obese/type 2 diabetic mice, whereas the basal (unstimulated) adiponectin release level was elevated twofold. Gene expression of beta(3)AR and Epac1 was reduced in adipocytes from obese animals, and corresponded to a respective similar to 35% and similar to 30% reduction at the protein level. Small interfering RNA-mediated knockdown of beta(3)AR (similar to 60%) and Epac1 (similar to 50%) was associated with abrogated catecholamine-stimulated adiponectin secretion. We propose that adiponectin exocytosis is stimulated via adrenergic signaling pathways mainly involving beta(3)ARs. We further suggest that adrenergically stimulated adiponectin secretion is disturbed in obesity/type 2 diabetes as a result of the reduced expression of beta(3)ARs and Epac1 in a state we define as "catecholamine resistance."
  •  
19.
  • Lagerquist, Marie K, et al. (författare)
  • Acute fat loss does not affect bone mass
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity has previously been thought to protect bone since high body weight and body mass index are associated with high bone mass. However, some more recent studies suggest that increased adiposity negatively impacts bone mass. Here, we aimed to test whether acute loss of adipose tissue, via adipocyte apoptosis, alters bone mass in age-related obese mice. Adipocyte apoptosis was induced in obese male FAT-ATTAC mice through AP20187 dimerizer-mediated activation of caspase 8 selectively in adipocytes. In a short-term experiment, dimerizer was administered to 5.5 month-old mice that were terminated 2 weeks later. At termination, the total fat mass weighed 58% less in dimerizer-treated mice compared with vehicle-treated controls, but bone mass did not differ. To allow for the detection of long-term effects, we used 9-month-old mice that were terminated six weeks after dimerizer administration. In this experiment, the total fat mass weighed less (- 68%) in the dimerizer-treated mice than in the controls, yet neither bone mass nor biomechanical properties differed between groups. Our findings show that adipose tissue loss, despite the reduced mechanical loading, does not affect bone in age-related obese mice. Future studies are needed to test whether adipose tissue loss is beneficial during more severe obesity.
  •  
20.
  • Maric, Ivana, et al. (författare)
  • Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents.
  • 2022
  • Ingår i: Frontiers in nutrition. - : Frontiers Media SA. - 2296-861X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Prevalence and health consequences of obesity differ between men and women. Yet, most preclinical studies investigating the etiology of obesity have, to date, been conducted in male rodents. Notably, diet is a major determinant of obesity, but sex differences in rodent models of diet-induced obesity, and the mechanisms that underlie such differences, are still understudied. Here, we aim to determine whether time course and characteristics of diet-induced obesity differ between sexes in rats and mice, and to investigate the potential causes of the observed divergence. To achieve this, we offered the most commonly tested rodents of both sexes, SD rats and C57BL/6 mice, a free choice of 60 % high-fat diet (HFD) and regular chow; body weight, food intake, fat mass, brown adipose responses, locomotor activity and glucose tolerance were assessed in a similar manner in both species. Our results indicate that overall diet-induced hyperphagia is greater in males but that females display a higher preference for the HFD, irrespective of species. Female rats, compared to males, showed a delay in diet-induced weight gain and less metabolic complications. Although male rats increased brown adipose tissue thermogenesis in response to the HFD challenge, this was not sufficient to counteract increased adiposity. In contrast to rats, female and male mice presented with a dramatic adiposity and impaired glucose tolerance, and a decreased energy expenditure. Female mice showed a 5-fold increase in visceral fat, compared to 2-fold increase seen in male mice. Overall, we found that male and female rodents responded very differently to HFD challenge, and engaged different compensatory energy expenditure mechanisms. In addition, these sex differences are divergent in rats and mice. We conclude that SD rats have a better face validity for the lower prevalence of overweight in women, while C57BL/6 mice may better model the increased prevalence of morbid obesity in women.
  •  
21.
  • Micallef, Peter, 1988, et al. (författare)
  • Adipose Tissue-Breast Cancer Crosstalk Leads to Increased Tumor Lipogenesis Associated with Enhanced Tumor Growth.
  • 2021
  • Ingår i: International journal of molecular sciences. - 1422-0067. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We sought to identify therapeutic targets for breast cancer by investigating the metabolic symbiosis between breast cancer and adipose tissue. To this end, we compared orthotopic E0771 breast cancer tumors that were in direct contact with adipose tissue with ectopic E0771 tumors in mice. Orthotopic tumors grew faster and displayed increased de novo lipogenesis compared to ectopic tumors. Adipocytes release large amounts of lactate, and we found that both lactate pretreatment and adipose tissue co-culture augmented de novo lipogenesis in E0771 cells. Continuous treatment with the selective FASN inhibitor Fasnall dose-dependently decreased the E0771 viability in vitro. However, daily Fasnall injections were effective only in 50% of the tumors, while the other 50% displayed accelerated growth. These opposing effects of Fasnall in vivo was recapitulated in vitro; intermittent Fasnall treatment increased the E0771 viability at lower concentrations and suppressed the viability at higher concentrations. In conclusion, our data suggest that adipose tissue enhances tumor growth by stimulating lipogenesis. However, targeting lipogenesis alone can be deleterious. To circumvent the tumor's ability to adapt to treatment, we therefore believe that it is necessary to apply an aggressive treatment, preferably targeting several metabolic pathways simultaneously, together with conventional therapy.
  •  
22.
  • Micallef, Peter, 1988, et al. (författare)
  • C1QTNF3 is Upregulated During Subcutaneous Adipose Tissue Remodeling and Stimulates Macrophage Chemotaxis and M1-Like Polarization
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The adipose tissue undergoes substantial tissue remodeling during weight gain-induced expansion as well as in response to the mechanical and immunological stresses from a growing tumor. We identified the C1q/TNF-related protein family member C1qtnf3 as one of the most upregulated genes that encode secreted proteins in tumor-associated inguinal adipose tissue - especially in high fat diet-induced obese mice that displayed 3-fold larger tumors than their lean controls. Interestingly, inguinal adipose tissue C1qtnf3 was co-regulated with several macrophage markers and chemokines and was primarily expressed in fibroblasts while only low levels were detected in adipocytes and macrophages. Administration of C1QTNF3 neutralizing antibodies inhibited macrophage accumulation in tumor-associated inguinal adipose tissue while tumor growth was unaffected. In line with this finding, C1QTNF3 exerted chemotactic actions on both M1- and M2-polarized macrophages in vitro. Moreover, C1QTNF3 treatment of M2-type macrophages stimulated the ERK and Akt pathway associated with increased M1-like polarization as judged by increased expression of M1-macrophage markers, increased production of nitric oxide, reduced oxygen consumption and increased glycolysis. Based on these results, we propose that macrophages are recruited to adipose tissue sites with increased C1QTNF3 production. However, the impact of the immunomodulatory effects of C1QTNF3 in adipose tissue remodeling warrants future investigations.
  •  
23.
  • Mishra, Devesh, et al. (författare)
  • Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism
  • 2019
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 26:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuro-anatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (IPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating IPBN neurons. IL-6 microinjection into IPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of IPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of IPBN IL-6. These results indicate that IPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with IPBN IL-6.
  •  
24.
  • Nuñez Durán, Esther, et al. (författare)
  • Protein kinase STK25 aggravates the severity of non-alcoholic fatty pancreas disease in mice
  • 2017
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 234:1, s. 15-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterising the molecular networks that negatively regulate pancreatic beta-cell function is essential for understanding the underlying pathogenesis and developing new treatment strategies for type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic fat storage, meta-inflammation, and fibrosis in liver and skeletal muscle. Here, we assessed the role of STK25 in control of progression of non-alcoholic fatty pancreas disease in the context of chronic exposure to dietary lipids in mice. We found that overexpression of STK25 in high-fat-fed transgenic mice aggravated diet-induced lipid storage in the pancreas compared with that of wild-type controls, which was accompanied by exacerbated pancreatic inflammatory cell infiltration, stellate cell activation, fibrosis and apoptosis. Pancreas of Stk25 transgenic mice also displayed a marked decrease in islet beta/alpha-cell ratio and alteration in the islet architecture with an increased presence of a-cells within the islet core, whereas islet size remained similar between genotypes. After a continued challenge with a high-fat diet, lower levels of fasting plasma insulin and C-peptide, and higher levels of plasma leptin, were detected in Stk25 transgenic vs wild-type mice. Furthermore, the glucose-stimulated insulin secretion was impaired in high-fat-fed Stk25 transgenic mice during glucose tolerance test, in spite of higher net change in blood glucose concentrations compared with wild-type controls, suggesting islet beta-cell dysfunction. In summary, this study unravels a role for STK25 in determining the susceptibility to diet-induced nonalcoholic fatty pancreas disease in mice in connection to obesity. Our findings highlight STK25 as a potential drug target for metabolic disease.
  •  
25.
  • Peris, Eduard, et al. (författare)
  • Antioxidant treatment induces reductive stress associated with mitochondrial dysfunction in adipocytes
  • 2019
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:7, s. 2340-2352
  • Tidskriftsartikel (refereegranskat)abstract
    • beta-Adrenergic stimulation of adipose tissue increases mitochondrial density and activity (browning) that are associated with improved whole-body metabolism. Whereas chronically elevated levels of reactive oxygen species (ROS) in adipose tissue contribute to insulin resistance, transient ROS elevation stimulates physiological processes such as adipogenesis. Here, using a combination of biochemical and cell and molecular biology-based approaches, we studied whether ROS or antioxidant treatment affects beta 3-adrenergic receptor (beta 3-AR) stimulation-induced adipose tissue browning. We found that beta 3-AR stimulation increases ROS levels in cultured adipocytes, but, unexpectedly, pretreatment with different antioxidants (N-acetylcysteine, vitamin E, or GSH ethyl ester) did not prevent this ROS increase. Using fluorescent probes, we discovered that the antioxidant treatments instead enhanced beta 3-AR stimulation-induced mitochondrial ROS production. This pro-oxidant effect of antioxidants was, even in the absence of beta 3-AR stimulation, associated with decreased oxygen consumption and increased lactate production in adipocytes. We observed similar antioxidant effects in WT mice: N-acetylcysteine blunted beta 3-AR stimulation-induced browning of white adipose tissue and reduced mitochondrial activity in brown adipose tissue even in the absence of beta 3-AR stimulation. Furthermore, N-acetylcysteine increased the levels of peroxiredoxin 3 and superoxide dismutase 2 in adipose tissue, indicating increased mitochondrial oxidative stress. We interpret this negative impact of antioxidants on oxygen consumption in vitro and adipose tissue browning in vivo as essential adaptations that prevent a further increase in mitochondrial ROS production. In summary, these results suggest that chronic antioxidant supplementation can produce a paradoxical increase in oxidative stress associated with mitochondrial dysfunction in adipocytes.
  •  
26.
  • Richard, Jennifer E., et al. (författare)
  • CNS beta(3)-adrenergic receptor activation regulates feeding behavior, white fat browning, and body weight
  • 2017
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 313:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological beta(3)-adrenergic receptor (beta(3)AR) activation leads to increased mitochondrial biogenesis and activity in white adipose tissue (WAT), a process commonly referred to as "browning", and transiently increased insulin release. These effects are associated with improved metabolic function and weight loss. It is assumed that this impact of beta(3)AR agonists is mediated solely through activation of beta(3)ARs in adipose tissue. However, beta(3)ARs are also found in the brain, in areas such as the brain stem and the hypothalamus, which provide multisynaptic innervation to brown and white adipose depots. Thus, contrary to the current adipocentric view, the central nervous system (CNS) may also have the ability to regulate energy balance and metabolism through actions on central beta(3)ARs. Therefore, this study aimed to elucidate whether CNS beta(3)ARs can regulate browning of WAT and other aspects of metabolic regulation, such as food intake control and insulin release. We found that acute central injection of beta 3AR agonist potently reduced food intake, body weight, and increased hypothalamic neuronal activity in rats. Acute central beta(3)AR stimulation was also accompanied by a transient increase in circulating insulin levels. Moreover, subchronic central beta(3)AR agonist treatment led to a browning response in both inguinal (IWAT) and gonadal WAT (GWAT), along with reduced GWAT and increased BAT mass. In high-fat, high-sugar-fed rats, subchronic central beta(3)AR stimulation reduced body weight, chow, lard, and sucrose water intake, in addition to increasing browning of IWAT and GWAT. Collectively, our results identify the brain as a new site of action for the anorexic and browning impact of beta(3)AR activation.
  •  
27.
  • Saliha, Musovic, 1990, et al. (författare)
  • Noradrenaline and ATP regulate adiponectin exocytosis in white adipocytes: Disturbed adrenergic and purinergic signalling in obese and insulin-resistant mice
  • 2022
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 549
  • Tidskriftsartikel (refereegranskat)abstract
    • White adipocyte adiponectin exocytosis is triggered by cAMP and a concomitant increase of cytosolic Ca2+ potentiates its release. White adipose tissue is richly innervated by sympathetic nerves co-releasing noradrenaline (NA) and ATP, which may act on receptors in the adipocyte plasma membrane to increase cAMP via adrenergic receptors and Ca2+ via purinergic receptors. Here we determine the importance of NA and ATP for the regulation of white adipocyte adiponectin exocytosis, at the cellular and molecular level, and we specifically detail the ATP signalling pathway. We demonstrate that tyrosine hydroxylase (enzyme involved in catecholamine synthesis) is dramatically reduced in inguinal white adipose tissue (IWAT) isolated from mice with diet induced obesity; this is associated with diminished levels of NA in IWAT and with a reduced ratio of high molecular-weight (HMW) to total adiponectin in serum. Adiponectin exocytosis (measured as an increase in plasma membrane capacitance and as secreted product) is triggered by NA or ATP alone in cultured and primary mouse IWAT adipocytes, and enhanced by a combination of the two secretagogues. The ATP-induced adiponectin exocytosis is largely Ca2+-dependent and activated via purinergic P2Y2 receptors (P2Y2Rs) and the Gq11/PLC pathway. Adiponectin release induced by the nucleotide is abrogated in adipocytes isolated from obese and insulin-resistant mice, and this is associated with ~70% reduced abundance of P2Y2Rs. The NA-triggered adiponectin exocytosis is likewise abolished in "obese adipocytes ", concomitant with a 50% lower gene expression of beta 3 adrenergic receptors (beta 3ARs). An increase in intracellular Ca2+ is not required for the NA-stimulated adiponectin secretion. Collectively, our data suggest that sympathetic innervation is a principal regulator of adiponectin exocytosis and that disruptions of this control are associated with the obesity-associated reduction of circulating levels of HMW/total adiponectin.
  •  
28.
  • Shrestha, Man Mohan, et al. (författare)
  • Adiponectin Deficiency Alters Placenta Function but Does Not Affect Fetal Growth in Mice
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067 .- 1661-6596. ; 23:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Adiponectin administration to pregnant mice decreases nutrient transport and fetal growth. An adiponectin deficiency, on the other hand, as seen in obese women during pregnancy, alters fetal growth; however, the mechanism is unclear. To determine the role of adiponectin on placenta function and fetal growth, we used adiponectin knockout, adiponectin heterozygote that displays reduced adiponectin levels, and wild-type mice on a control diet or high fat/high sucrose (HF/HS) diet. Triglycerides (TGs) in the serum, liver, and placenta were measured using colorimetric assays. Gene expression was measured using quantitative RT-PCR. Adiponectin levels did not affect fetal weight, but it reduced adiponectin levels, increased fetal serum and placenta TG content. Wildtype dams on a HF/HS diet protected the fetuses from fatty acid overload as judged by increased liver TGs in dams and normal serum and liver TG levels in fetuses, while low adiponectin was associated with increased fetal liver TGs. Low maternal adiponectin increased the expression of genes involved in fatty acid transport; Lpl and Cd36 in the placenta. Adiponectin deficiency does not affect fetal growth but induces placental dysfunction and increases fetal TG load, which is enhanced with obesity. This could lead to imprinting effects on the fetus and the development of metabolic dysfunction in the offspring.
  •  
29.
  • Svahn, Sara L, et al. (författare)
  • Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ.
  •  
30.
  • Vergari, Elisa, et al. (författare)
  • Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoglycaemia (low plasma glucose) is a serious and potentially fatal complication of insulin-treated diabetes. In healthy individuals, hypoglycaemia triggers glucagon secretion, which restores normal plasma glucose levels by stimulation of hepatic glucose production. This counterregulatory mechanism is impaired in diabetes. Here we show in mice that therapeutic concentrations of insulin inhibit glucagon secretion by an indirect (paracrine) mechanism mediated by stimulation of intra-islet somatostatin release. Insulin's capacity to inhibit glucagon secretion is lost following genetic ablation of insulin receptors in the somatostatin-secreting δ-cells, when insulin-induced somatostatin secretion is suppressed by dapagliflozin (an inhibitor of sodium-glucose co-tranporter-2; SGLT2) or when the action of secreted somatostatin is prevented by somatostatin receptor (SSTR) antagonists. Administration of these compounds in vivo antagonises insulin's hypoglycaemic effect. We extend these data to isolated human islets. We propose that SSTR or SGLT2 antagonists should be considered as adjuncts to insulin in diabetes therapy.
  •  
31.
  • Vergari, Elisa, et al. (författare)
  • Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta-cells.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:1, s. 32-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells.
  •  
32.
  • Vujičić, Milica, 1982, et al. (författare)
  • A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 1091-6490. ; 121:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient removal of fibrillar collagen is essential for adaptive subcutaneous adipose tissue (SAT) expansion that protects against ectopic lipid deposition during weight gain. Here, we used mice to further define the mechanism for this collagenolytic process. We show that loss of collagen type-1 (CT1) and increased CT1-fragment levels in expanding SAT are associated with proliferation of resident M2-like macrophages that display increased CD206-mediated engagement in collagen endocytosis compared to chow-fed controls. Blockage of CD206 during acute high-fat diet-induced weight gain leads to SAT CT1-fragment accumulation associated with elevated inflammation and fibrosis markers. Moreover, these SAT macrophages' engagement in collagen endocytosis is diminished in obesity associated with elevated levels collagen fragments that are too short to assemble into triple helices. We show that such short fragments provoke M2-macrophage proliferation and fibroinflammatory changes in fibroblasts. In conclusion, our data delineate the importance of a macrophage-collagen fragment axis in physiological SAT expansion. Therapeutic targeting of this process may be a means to prevent pathological adipose tissue remodeling, which in turn may reduce the risk for obesity-related metabolic disorders.
  •  
33.
  • Wernstedt Asterholm, Ingrid, 1978, et al. (författare)
  • Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling.
  • 2014
  • Ingår i: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 20:1, s. 103-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic inflammation constitutes an important link between obesity and its pathophysiological sequelae. In contrast to the belief that inflammatory signals exert a fundamentally negative impact on metabolism, we show that proinflammatory signaling in the adipocyte is in fact required for proper adipose tissue remodeling and expansion. Three mouse models with an adipose tissue-specific reduction in proinflammatory potential were generated that display a reduced capacity for adipogenesis in vivo, while the differentiation potential is unaltered in vitro. Upon high-fat-diet exposure, the expansion of visceral adipose tissue is prominently affected. This is associated with decreased intestinal barrier function, increased hepatic steatosis, and metabolic dysfunction. An impaired local proinflammatory response in the adipocyte leads to increased ectopic lipid accumulation, glucose intolerance, and systemic inflammation. Adipose tissue inflammation is therefore an adaptive response that enables safe storage of excess nutrients and contributes to a visceral depot barrier that effectively filters gut-derived endotoxin.
  •  
34.
  • Wernstedt Asterholm, Ingrid, 1978, et al. (författare)
  • Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice.
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:1, s. 1209-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistin was originally identified as an adipocyte-derived factor upregulated during obesity and as a contributor to obesity-associated insulin resistance. Clinically, resistin has also been implicated in cardiovascular disease in a number of different patient populations. Our aim was to simultaneously address these phenomena.
  •  
35.
  •  
36.
  • Wernstedt Asterholm, Ingrid, 1978, et al. (författare)
  • Pathological Type-2 Immune Response, Enhanced Tumor Growth, and Glucose Intolerance in Retn/beta (RELM beta) Null Mice A Model of Intestinal Immune System Dysfunction in Disease Susceptibility
  • 2016
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440. ; 186:9, s. 2404-2416
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistin, and its closely related homoldgs, the resistin-like molecules (RELMs) have been implicated in metabolic dysregulation, inflammation, and cancer. Specifically, REM beta expressed predominantly in the goblet cells in the colon, is released both apically and basolaterally, and is hence found in both the intestinal lumen in the mucosal layer as well as in the circulation. RELM beta has been linked to both the pathogenesis of colon cancer and type 2 diabetes. RELM beta plays a complex role in immune system regulation, and the impact of loss of function of RELM beta on colon cancer and metabolic regulation has not been fully elucidated. We therefore tested whether Retnl beta (mouse ortholog of human RETNL beta null mice have an enhanced or reduced susceptibility for colon cancer as well as metabolic dysfunction. We found that the lack of RELM beta Leads to increased colonic expression of T helper cell type-2 cytokines and IL-17, associated with a reduced ability to maintain intestinal homeostasis. This defect leads to an enhanced susceptibility to the development of inflammation, colorectal cancer, and glucose intolerance. In conclusion, the phenotype of the Retnl beta null mice unravels new aspects of inflammation-mediated diseases and strengthens the notion that a proper intestinal barrier function is essential to sustain a healthy phenotype.
  •  
37.
  • Wu, Yanling, 1985, et al. (författare)
  • Maternal adiponectin prevents visceral adiposity and adipocyte hypertrophy in prenatal androgenized female mice
  • 2021
  • Ingår i: FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperandrogenism is the main characteristic of polycystic ovary syndrome, which affects placental function and fetal growth, and leads to reproductive and metabolic dysfunction in female offspring. Adiponectin acts on the placenta and may exert endocrine effects on the developing fetus. This study aims to investigate if maternal and/or fetal adiponectin can prevent metabolic and reproductive dysfunction in prenatal androgenized (PNA) female offspring. Adiponectin transgenic (APNtg) and wild-type dams received dihydrotestosterone/vehicle injections between gestational days 16.5-18.5 to induce PNA offspring, which were followed for 4 months. Offspring from APNtg dams were smaller than offspring from wild-type dams, independent of genotype. Insulin sensitivity was higher in wild-type mice from APNtg dams compared to wild-types from wild-type dams, and insulin sensitivity correlated with fat mass and adipocyte size. PNA increased visceral fat% and adipocyte size in wild-type offspring from wild-type dams, while wild-type and APNtg offspring from APNtg dams were protected against this effect. APNtg mice had smaller adipocytes than wild-types and this morphology was associated with an increased expression of genes regulating adipogenesis (Ppard, Pparg, Cebpa, and Cebpb) and metabolism (Chrebp and Lpl). Anogenital distance was increased in all PNA-exposed wild-type offspring, but there was no increase in PNA APNtg offspring, suggesting that adiponectin overexpression protects against this effect. In conclusion, elevated adiponectin levels in utero improve insulin sensitivity, reduce body weight and fat mass gain in the adult offspring and protect against PNA-induced visceral adiposity. In conclusion, these data suggest that PNA offspring benefit from prenatal adiponectin supplementation.
  •  
38.
  • Zhu, Q., et al. (författare)
  • Suppressing adipocyte inflammation promotes insulin resistance in mice
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Obesity-induced insulin resistance is closely associated with chronic subclinical inflammation in white adipose tissue. However, the mechanistic involvement of adipocyte-derived inflammation under these disease conditions remains unclear. Our aim was to investigate the relative inflammation-related contributions of adipocytes and macrophages to insulin sensitivity. Methods: RIDα/β is an adenoviral protein complex that inhibits several inflammatory pathways, including TLR4, TNFα, and IL1β signaling. We generated novel mouse models with adipocyte-specific and macrophage-specific doxycycline (dox)-inducible RIDα/β-transgenic mice (RIDad and RIDmac mice, respectively). Results: RIDα/β induction significantly reduced LPS-stimulated inflammatory markers, such as Tnf, Il1b, and Saa3 in adipose tissues. Surprisingly, RIDad mice had elevated levels of postprandial glucose and insulin and exhibited glucose intolerance and insulin resistance, even under chow-fed conditions. Moreover, the RIDad mice displayed further insulin resistance under obesogenic (high-fat diet, HFD) conditions despite reduced weight gain. In addition, under pre-existing obese and inflamed conditions on an HFD, subsequent induction of RIDα/β in RIDad mice reduced body weight gain, further exacerbating glucose tolerance, enhancing insulin resistance and fatty liver, and reducing adiponectin levels. This occurred despite effective suppression of the inflammatory pathways (including TNFα and IL1β). In contrast, RIDmac mice, upon HFD feeding, displayed similar weight gain, comparable adiponectin levels, and insulin sensitivity, suggesting that the inflammatory properties of macrophages did not exert a negative impact on metabolic readouts. RIDα/β expression and the ensuing suppression of inflammation in adipocytes enhanced adipose tissue fibrosis and reduced vascularization. Conclusion: Our novel findings further corroborate our previous observations suggesting that suppressing adipocyte inflammation impairs adipose tissue function and promotes insulin resistance, despite beneficial effects on weight gain. © 2020 The Authors
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38
Typ av publikation
tidskriftsartikel (36)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (38)
Författare/redaktör
Wernstedt Asterholm, ... (38)
Benrick, Anna, 1979- (11)
Chanclón, Belén (9)
Micallef, Peter, 198 ... (9)
Wu, Yanling, 1985 (8)
Peris, Eduard (7)
visa fler...
Rorsman, Patrik, 195 ... (6)
Olofsson, Charlotta ... (6)
Bauzá-Thorbrügge, Ma ... (5)
Vujičić, Milica, 198 ... (5)
Skibicka, Karolina P (4)
Scherer, P. E. (4)
Jansson, John-Olov, ... (4)
Saliha, Musovic, 199 ... (4)
Banke, Elin (3)
Zhang, Quan (3)
Ramracheya, Reshma (3)
Chibalina, Margarita ... (3)
Crewe, C. (3)
Richard, Jennifer E. (3)
Eerola, Kim, 1982 (3)
López-Ferreras, Lore ... (3)
Grahnemo, Louise (3)
Knudsen, Jakob G. (3)
Shrestha, Man Mohan (3)
Scherer, Philipp E. (3)
Marschall, Hanns-Ulr ... (2)
Adam, Julie (2)
Hamilton, Alexander (2)
Tarasov, Andrei I. (2)
Rorsman, Nils J.G. (2)
Ohlsson, Claes, 1965 (2)
Salehi, Albert (2)
Alrifaiy, Ahmed (2)
Cansby, Emmelie, 198 ... (2)
Mahlapuu, Margit, 19 ... (2)
An, Y. A. (2)
Funcke, J. B. (2)
Kusminski, C. M. (2)
Sjögren, Klara, 1970 (2)
Schéle, Erik, 1980 (2)
Maric, Ivana (2)
Stener-Victorin, E (2)
Paul, Alexandra, 198 ... (2)
Henning, Petra, 1974 (2)
Miranda, Caroline (2)
Komai, Ali, 1987 (2)
Gustafsson, Karin L. ... (2)
Reimann, Frank (2)
Guida, Claudia (2)
visa färre...
Lärosäte
Göteborgs universitet (38)
Högskolan i Skövde (4)
Chalmers tekniska högskola (4)
Karolinska Institutet (4)
Lunds universitet (3)
Linköpings universitet (1)
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (5)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy