SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wetterskog Erik) "

Sökning: WFRF:(Wetterskog Erik)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, Ankit, et al. (författare)
  • Effect of in situ electric-field-assisted growth on antiphase boundaries in epitaxial Fe3O4 thin films on MgO
  • 2018
  • Ingår i: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Antiphase boundaries (APBs) normally form as a consequence of the initial growth conditions in all spinel ferrite thin films. These boundaries result from the intrinsic nucleation and growth mechanism, and are observed as regions where the periodicity of the crystalline lattice is disrupted. The presence of APBs in epitaxial films of the inverse spinel Fe3O4 alters their electronic and magnetic properties due to strong antiferromagnetic (AF) interactions across these boundaries. We explore the effect of using in-plane in situ electric-field-assisted growth on the formation of APBs in heteroepitaxial Fe3O4(100)/MgO(100) thin films. The electric-field-assisted growth is found to reduce the AF interactions across APBs and, as a consequence, APB-free thin-film-like properties are obtained, which have been probed by electronic, magnetic, and structural characterization. The electric field plays a critical role in controlling the density of APBs during the nucleation process by providing an electrostatic force acting on adatoms and therefore changing their kinetics. This innovative technique can be employed to grow epitaxial spinel thin films with controlled AF interactions across APBs.
  •  
2.
  • Agthe, Michael, et al. (författare)
  • Dynamic growth modes of ordered arrays and mesocrystals during drop-casting of iron oxide nanocubes
  • 2014
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry (RSC). - 1466-8033. ; 16:8, s. 1443-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth modes of self-assembled mesocrystals and ordered arrays from dispersions of iron oxide nanocubes with a mean edge length of 9.6 nm during controlled solvent removal have been investigated with a combination of visible light video microscopy, atomic force microscopy and scanning electron microscopy. Mesocrystals with translational and orientational order of sizes up to 10 mu m are formed spontaneously during the final, diffusion-controlled, drop-casting stage when the liquid film is very thin and the particle concentration is high. Convection-driven deposition of ordered nanocube arrays at the edge of the drying droplet is a manifestation of the so called coffee-ring effect. Dendritic growth or fingering of rapidly growing arrays of ordered nanocubes could also be observed in a transition regime as the growth front moves from the initial three-phase contact line towards the centre of the original droplet.
  •  
3.
  • Agthe, Michael, et al. (författare)
  • Following the Assembly of Iron Oxide Nanocubes by Video Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring
  • 2017
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 33:1, s. 303-310
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model. The growth of each mesocrystal depends only on the number of nanoparticles within the accessible region irrespective of the relative time of formation. The mass of the dried mesocrystals estimated from the analysis of the bandwidth-shift-to-frequency-shift ratio correlates well with the total mass of the oleate-coated nanoparticles in the deposited dispersion drop.
  •  
4.
  •  
5.
  • Ahrentorp, Fredrik, et al. (författare)
  • Effective particle magnetic moment of multi-core particles
  • 2015
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853 .- 1873-4766. ; 380, s. 221-226
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems BNF Starch from Micromod with a median particle diameter of 100 am and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm. (C) 2014 Elsevier B.V. All rights reserved.
  •  
6.
  • Bender, P., et al. (författare)
  • Dipolar-coupled moment correlations in clusters of magnetic nanoparticles
  • 2018
  • Ingår i: Physical Review B. - 2469-9950 .- 2469-9969. ; 98:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we resolve the nature of the moment coupling between 10-nm dimercaptosuccinic acid-coated magnetic nanoparticles. The individual iron oxide cores were composed of >95% maghemite and agglomerated to clusters. At room temperature the ensemble behaved as a superparamagnet according to Mössbauer and magnetization measurements, however, with clear signs of dipolar interactions. Analysis of temperature-dependent ac susceptibility data in the superparamagnetic regime indicates a tendency for dipolar-coupled anticorrelations of the core moments within the clusters. To resolve the directional correlations between the particle moments we performed polarized small-angle neutron scattering and determined the magnetic spin-flip cross section of the powder in low magnetic field at 300 K. We extract the underlying magnetic correlation function of the magnetization vector field by an indirect Fourier transform of the cross section. The correlation function suggests nonstochastic preferential alignment between neighboring moments despite thermal fluctuations, with anticorrelations clearly dominating for next-nearest moments. These tendencies are confirmed by Monte Carlo simulations of such core clusters.
  •  
7.
  • Bender, P., et al. (författare)
  • Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers
  • 2018
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:5, s. 3068-3077
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and possibly connected to the disordered spins within the individual nanoflowers.
  •  
8.
  • Bender, Philipp, et al. (författare)
  • Shape-induced superstructure formation in concentrated ferrofluids under applied magnetic fields
  • 2022
  • Ingår i: Journal of applied crystallography. - : INT UNION CRYSTALLOGRAPHY. - 0021-8898 .- 1600-5767. ; 55:6, s. 1613-1621
  • Tidskriftsartikel (refereegranskat)abstract
    • The field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for similar to 9 nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles. On the basis of the short interparticle distances found here, oriented attachment, i.e. a face-to-face arrangement of the nanocubes, is likely. The unusual field dependence of the interparticle correlations suggests a field-induced structural rearrangement.
  •  
9.
  • Disch, Sabrina, et al. (författare)
  • Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes
  • 2011
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 11:4, s. 1651-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • Grazing incidence small-angle scattering and electron microscopy have been used to show for the first time that nonspherical nanoparticles can assemble into highly ordered body-centered tetragonal mesocrystals. Energy models accounting for the directionality and magnitude of the van der Waals and dipolar interactions as a function of the degree of truncation of the nanocubes illustrated the importance of the directional dipolar forces for the formation of the initial nanocube clusters and the dominance of the van der Waals multibody interactions in the dense packed arrays.
  •  
10.
  • Disch, S., et al. (författare)
  • Spin excitations in cubic maghemite nanoparticles studied by time-of-flight neutron spectroscopy
  • 2014
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 89:6, s. 064402-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have determined the field dependence of collective magnetic excitations in iron oxide nanoparticles of cubic shape with 8.42(2) nm edge length and a narrow log normal size distribution of 8.2(2)% using time-of-flight neutron spectroscopy. The energy dependence of the uniform precession modes was investigated up to 5 T applied field and yields a Lande factor g = 2.05(2) as expected for maghemite (gamma-Fe2O3) nanoparticles. A large effective anisotropy field of B-A,B-eff = 0.45(16) T was determined, in excellent agreement with macroscopic measurements. This anisotropy is attributed to enhanced shape anisotropy in these monodisperse cubic nanoparticles. The combination of our results with macroscopic magnetization information provides a consistent view of the energy scales of superparamagnetic relaxation and collective magnetic excitations in magnetic nanoparticles.
  •  
11.
  • Disch, Sabrina, et al. (författare)
  • Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation
  • 2013
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 5:9, s. 3969-3975
  • Tidskriftsartikel (refereegranskat)abstract
    • The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.
  •  
12.
  • Dish, Sabina, et al. (författare)
  • Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering
  • 2012
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 14, s. 013025-
  • Tidskriftsartikel (refereegranskat)abstract
    • By means of polarized small-angle neutron scattering, we have resolved the long-standing challenge of determining the magnetization distribution in magnetic nanoparticles in absolute units. The reduced magnetization, localized in non-interacting nanoparticles, indicates strongly particle shape-dependent surface spin canting with a 0.3(1) and 0.5(1) nm thick surface shell of reduced magnetization found for similar to 9 nm nanospheres and similar to 8.5 nm nanocubes, respectively. Further, the reduced macroscopic magnetization in nanoparticles results not only from surface spin canting, but also from drastically reduced magnetization inside the uniformly magnetized core as compared to the bulk material. Our microscopic results explain the low macroscopic magnetization commonly found in nanoparticles.
  •  
13.
  • Dresen, Dominique, et al. (författare)
  • Neither Sphere nor Cube-Analyzing the Particle Shape Using Small-Angle Scattering and the Superball Model
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:42, s. 23356-23363
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate characterization of the nanocrystal shape with high statistical relevance is essential for exploiting the strongly shapedependent properties of cuboidal nanoparticles toward applications. This work presents the development of a new small-angle scattering form factor based on the superball geometry. The superball quantifies the characteristic rounding of corners and edges of cuboidal nanoparticles with a single parameter. Applied to small-angle scattering data of sufficiently monodisperse nanoparticles, the superball form factor enables differentiation between the effects of extended particle size distribution and irregular particle shape. The quantitative application of the superball form factor is validated against microscopy data for a series of monodisperse nanoparticles and implemented into the user-friendly, open-source software Sasview.
  •  
14.
  • Faure, B., et al. (författare)
  • 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals
  • 2013
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 5:3, s. 953-960
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe2O3 spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions.
  •  
15.
  • Gavilán, Helena, et al. (författare)
  • Colloidal Flower-Shaped Iron Oxide Nanoparticles : Synthesis Strategies and Coatings
  • 2017
  • Ingår i: Particle & particle systems characterization. - : Wiley. - 0934-0866 .- 1521-4117. ; 34:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self-assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi-core nanoparticles are determined. In addition, a self-consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower-shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)2, polyol-mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long-term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi-core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower-shaped nanoparticles.
  •  
16.
  • Gross, B., et al. (författare)
  • Magnetic anisotropy of individual maghemite mesocrystals
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 103:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Interest in creating magnetic metamaterials has led to methods for growing superstructures of magnetic nanoparticles. Mesoscopic crystals of maghemite (gamma-Fe2O3) nanoparticles can be arranged into highly ordered body-centered tetragonal lattices of up to a few micrometers. Although measurements on disordered ensembles have been carried out, determining the magnetic properties of individual mesoscopic crystals is challenging due to their small total magnetic moment. Here, we overcome these challenges by utilizing sensitive dynamic cantilever magnetometry to study individual micrometer-sized gamma-Fe2O3 mesocrystals. These measurements reveal an unambiguous cubic anisotropy, resulting from the crystalline anisotropy of the constituent maghemite nanoparticles and their alignment within the mesoscopic lattice. The signatures of anisotropy and its origins come to light because we combine the self-assembly of highly ordered mesocrystals with the ability to resolve their individual magnetism. This combination is promising for future studies of the magnetic anisotropy of other nanoparticles, which are too small to investigate individually.
  •  
17.
  • Herlitschke, M., et al. (författare)
  • Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering
  • 2016
  • Ingår i: International Conference On Polarised Neutrons For Condensed Matter Investigations (PNCMI 2014).
  • Konferensbidrag (refereegranskat)abstract
    • The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small -angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44 % and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.
  •  
18.
  • Josten, Elisabeth, et al. (författare)
  • Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals
  • 2020
  • Ingår i: Nanoscale Horizons. - : Royal Society of Chemistry (RSC). - 2055-6764 .- 2055-6756. ; 5:7, s. 1065-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-assembly of nanoparticles into highly ordered crystals is largely influenced by variations in the size and shape of the constituent particles, with crystallization generally not observed if their polydispersity is too large. Here, we report on size selectivity in the self-assembly of rounded cubic maghemite nanoparticles into three-dimensional mesocrystals. Different X-ray scattering techniques are used to study and compare a nanoparticle dispersion that is used later for self-assembly, an ensemble of mesocrystals grown on a substrate, as well as an individual mesocrystal. The individual lm-sized mesocrystal is isolated using a focused-ion-beam-based technique and investigated by the diffraction of a micro-focused X-ray beam. Structural analysis reveals that individual mesocrystals have a drastically smaller size dispersity of nanoparticles than that in the initial dispersion, implying very strong size selectivity during self-assembly. The small size dispersity of the nanoparticles within individual mesocrystals is accompanied by a very narrow lattice parameter distribution. In contrast, the lattice parameter distribution within all mesocrystals of an ensemble is about four times wider than that of individual mesocrystals, indicating significant size fractionalization between mesocrystals during self-assembly. The small size dispersity within each mesocrystal has important implications for their physical properties.
  •  
19.
  • Josten, Elisabeth, et al. (författare)
  • Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped gamma-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent.
  •  
20.
  • Liao, Xiaoqi, et al. (författare)
  • Low-field-induced spin-glass behavior and controllable anisotropy in nanoparticle assemblies at a liquid-air interface
  • 2022
  • Ingår i: SCIENCE CHINA-MATERIALS. - : Springer Nature. - 2095-8226 .- 2199-4501. ; 65:1, s. 193-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Stacking nanoscale-building blocks into one-dimensional (1D) assemblies with collective physical properties is a frontier in designing materials. However, the formation of 1D arrays using weak magnetic fields and an in-depth understanding of their magnetic properties remain challenging. Here, low-dimensional assemblies of iron oxide nanocubes with a disordered arrangement are fabricated at the diethylene-glycol/air interface in the presence of assembly fields (0/1/3/5/30/50 mT). Ring-shaped assemblies gradually transform as the assembly field increases from 0 to 50 mT, first to a porous network consisting of elongated assemblies and then to an aligned array of filaments, in which the aligned filaments are formed when the assembly field is >= 3 mT and duration t > 14 min. Spin-glass characteristics and static (dynamic) anisotropy factors similar to 2(3) are achieved by tuning the strength of the assembly field. In the presence of a relatively weak assembly field, the interplay between dipolar interactions and disorder with respect to magnetic easy axis alignment leads to spin-glass characteristics. The alignment of the magnetic easy axes and the strength of the dipolar interactions increase with increasing assembly field, resulting in the disappearance of spin-glass characteristics and enhancement of the magnetic anisotropy. This study presents a strategy for obtaining magnetic assemblies with spin-glass behavior and controllable anisotropy while shedding light on the magnetic interactions of low-dimensional assemblies.
  •  
21.
  • Liao, Xiaoqi, et al. (författare)
  • Superposition of conventional and spontaneous exchange bias in a Ni50Mn34In13Fe3 magnetic shape memory alloy
  • 2019
  • Ingår i: Journal of Alloys and Compounds. - : ELSEVIER SCIENCE SA. - 0925-8388 .- 1873-4669. ; 772, s. 988-993
  • Tidskriftsartikel (refereegranskat)abstract
    • The conventional exchange bias and spontaneous exchange bias are two interesting but fundamentally different effects in Mn rich Ni-Mn-Z magnetic shape memory alloys. Previous investigations show that these two phenomena appear separately. Here, we report that the conventional and spontaneous exchange bias phenomena coexist in a Ni50Mn34In13Fe3 alloy and the superposition of them increases the total exchange bias of the alloy. Our results suggest that the canonical spin glass and super spin glass may coexist and are embedded in the antiferromagnetic matrix of the martensite, through properly tuning the temperature-field history, which further results in the superposition of conventional and spontaneous exchange bias for this alloy. The interfacial interaction between the canonical spin glass and the antiferromagnetic matrix forms during field cooling process, which results in the conventional exchange bias. Moreover, the application of large magnetic field during the isothermal magnetization process changes the superspin glass into a superferromagnetic state, which interacts with the antiferromagnetic matrix at the interface, causing the spontaneous exchange bias. The superposition of exchange bias provides an effective way to achieve large exchange bias in materials. (C) 2018 Elsevier B.V. All rights reserved.
  •  
22.
  • Ludwig, Frank, et al. (författare)
  • Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles
  • 2014
  • Ingår i: IEEE Transactions on Magnetics. - 0018-9464 .- 1941-0069. ; 50:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured and analyzed three different commercial magnetic nanoparticle systems, both multi-core and single-core in nature, with the particle (core) size ranging from 20 to 100 nm. Complementary analysis methods and same characterization techniques were carried out in different labs and the results are compared with each other. The presented results primarily focus on determining the particle size-both the hydrodynamic size and the individual magnetic core size-as well as magnetic and structural properties. The used analysis methods include transmission electron microscopy, static and dynamic magnetization measurements, and Mossbauer spectroscopy. We show that particle (hydrodynamic and core) size parameters can be determined from different analysis techniques and the individual analysis results agree reasonably well. However, in order to compare size parameters precisely determined from different methods and models, it is crucial to establish standardized analysis methods and models to extract reliable parameters from the data.
  •  
23.
  • Mayence, Arnaud, et al. (författare)
  • Interfacial strain and defects in asymmetric Fe-Mn oxide hybrid nanoparticles
  • 2016
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 8:29, s. 14171-14177
  • Tidskriftsartikel (refereegranskat)abstract
    • Asymmetric Fe-Mn oxide hybrid nanoparticles have been obtained by a seed-mediated thermal decomposition-based synthesis route. The use of benzyl ether as the solvent was found to promote the orientational growth of Mn1-xO onto the iron oxide nanocube seeds yielding mainly dimers and trimers whereas 1-octadecene yields large nanoparticles. HRTEM imaging and HAADF-STEM tomography performed on dimers show that the growth of Mn1-xO occurs preferentially along the edges of iron oxide nanocubes where both oxides share a common crystallographic orientation. Fourier filtering and geometric phase analysis of dimers reveal a lattice mismatch of 5% and a large interfacial strain together with a significant concentration of defects. The saturation magnetization is lower and the coercivity is higher for the Fe-Mn oxide hybrid nanoparticles compared to the iron oxide nanocube seeds.
  •  
24.
  • Norrbo, Isabella, et al. (författare)
  • Solar UV index and UV dose determination with photochromic hackmanites : from the assessment of the fundamental properties to the device
  • 2018
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry (RSC). - 2051-6347 .- 2051-6355. ; 5:3, s. 569-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Extended exposure to sunlight or artificial UV sources is a major cause of serious skin and eye diseases such as cancer. There is thus a great need for convenient materials for the easy monitoring of UV doses. While organic photochromic molecules are tunable for responses under different wavelengths of UV radiation, they suffer from rather poor durability because the color changes involve drastic changes in molecular structure. Inorganic materials, on the other hand, are durable, but they have lacked tunability. Here, by combining computational and empirical data, we confirm the mechanism of coloration in the hackmanites, nature-based materials, and introduce a new technique called thermotenebrescence. With knowledge of the mechanism, we show that we can control and thus tune the energy of electronic states of synthetic hackmanites (Na,M)(8)Al6Si6O24(Cl,S)(2) so that their body color is sensitive to the solar UV index as well as UVA, UVB or UVC radiation levels. Finally, we demonstrate that it is possible to use images taken with an inexpensive cell phone to quantify the radiation dose or UV index. The hackmanite materials thus show great potential for use in portable healthcare both in everyday life and in laboratories.
  •  
25.
  • Polido Legaria, Elizabeth, et al. (författare)
  • Coordination of rare earth element cations on the surface of silica-derived nanoadsorbents
  • 2018
  • Ingår i: Dalton Transactions. - : ROYAL SOC CHEMISTRY. - 1477-9226 .- 1477-9234. ; 47:4, s. 1312-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • Silica (SiO2)-derived nanoadsorbents are a powerful and attractive tool for the extraction and separation of rare earth elements (REE) from many perspectives such as reusability, efficiency and minimum impact on the environment. In the present work, we investigated two different methods of adsorption down to the molecular level: (1) the mechanism of the coordination of different groups of REE (light, medium, heavy) with iminodiacetic acid (IDA) was revealed by exploiting models obtained from X-ray crystallography, explaining the selectivity of this type of ligand, and (2) the mechanism of the seeding of RE(OH)(3) initiated by SiO2-based nanoadsorbents was investigated by EXAFS, both individually and in combination with mechanism (1), showing the coexistence of both mechanisms. The REE loaded nanoadsorbents possess a high magnetic susceptibility. This property was studied by magnetometry to quantify the REE adsorption efficiency and compared with the values obtained from complexometry.
  •  
26.
  • Tian, Bo, et al. (författare)
  • Ferromagnetic Resonance Biosensor for Homogeneous and Volumetric Detection of DNA
  • 2018
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 3:6, s. 1093-1101
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to detect and analyze the state ofmagnetic labels with high sensitivity is of crucial importance fordeveloping magnetic biosensors. In this work, we demonstrate, forthefirst time, a ferromagnetic resonance (FMR) basedhomogeneous and volumetric biosensor for magnetic labeldetection. Two different isothermal amplification methods, i.e.,rolling circle amplification (RCA) and loop-mediated isothermalamplification (LAMP), are adopted and combined with a standardelectron paramagnetic resonance (EPR) spectrometer for FMRbiosensing. For the RCA-based FMR biosensor, binding of RCAproducts of a syntheticVibrio choleraetarget DNA sequence givesrise to the formation of aggregates of magnetic nanoparticles.Immobilization of nanoparticles within the aggregates leads to adecrease of the net anisotropy of the system and a concomitant increase of the resonancefield. A limit of detection of 1 pM isobtained with a linear detection range between 7.8 and 250 pM. For the LAMP-based sensing, a synthetic Zika virus targetoligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by theircoprecipitation with Mg2P2O7(a byproduct of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement,high sensitivity, and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate fordesigning future point-of-care devices.
  •  
27.
  •  
28.
  • Tian, Bo, et al. (författare)
  • MicroRNA Detection through DNAzyme-Mediated Disintegration of Magnetic Nanoparticle Assemblies
  • 2018
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 3, s. 1884-1891
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA-assembled nanoparticle superstructures offer numerous bioresponsive properties that can be utilized for point-of-care diagnostics. Functional DNA sequences such as deoxyribozymes (DNAzymes) provide novel bioresponsive strategies and further extend the application of DNA-assembled nanoparticle superstructures. In this work, we describe a microRNA detection biosensor that combines magnetic nanoparticle (MNP) assemblies with DNAzyme-assisted target recycling. The DNA scaffolds of the MNP assemblies contain substrate sequences for DNAzyme and can form cleavage catalytic structures in the presence of target DNA or RNA sequences, leading to rupture of the scaffolds and disintegration of the MNP assemblies. The target sequences are preserved during the cleavage reaction and release into the suspension to trigger the digestion of multiple DNA scaffolds. The high local concentration of substrate sequences in the MNP assemblies reduces the diffusion time for target recycling. The concentration of released MNPs, which is proportional to the concentration of the target, can be quantified by a 405 nm laser-based optomagnetic sensor. For the detection of let-7b in 10% serum, after 1 h of isothermal reaction at 50 degrees C, we found a linear detection range between 10 pM and 100 nM with a limit of detection of 6 pM. For the quantification of DNA target in buffer solution, a limit of detection of 1.5 pM was achieved. Compared to protein enzyme-based microRNA detection methods, the proposed DNAzyme-based biosensor has an increased stability, a reduced cost and a possibility to be used in living cells, all of which are valuable features for biosensing applications.
  •  
29.
  • Tian, Bo, et al. (författare)
  • Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation
  • 2017
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 98, s. 285-291
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a homogeneous biosensor for the detection of multivalent targets by combination of magnetic nanoparticle (MNP) chains and a low-cost 405 nm laser-based optomagnetic system. The MNP chains are assembled in a rotating magnetic field and stabilized by multivalent target molecules. The number of chains remaining in zero field is proportional to the target concentration, and can be quantified by optomagnetic measurements. The shape anisotropy of the MNP chains enhances the biosensor system in terms of providing efficient mixing, reduction of depletion effects (via magnetic shape anisotropy), and directly increasing the optomagnetic signal (via optical shape anisotropy). We achieve a limit of detection (LOD) of 5.5 pM (0.82 ng/mL) for the detection of a model multivalent molecule, biotinylated anti-streptavidin, in PBS. For the measurements of prostate-specific antigen (PSA) in 50% serum using the proposed method, we achieve an LOD of 21.6 pM (0.65 ng/mL) and a dynamic detection range up to 66.7 nM (2 µg/mL) with a sample-to-result time of approximately 20 min. The performance for PSA detection therefore well meets the clinical requirements in terms of LOD (the threshold PSA level in blood is 4 ng/mL) and detection range (PSA levels span from < 0.1–104 ng/mL in blood), thus showing great promise for routine PSA diagnostics and for other in-situ applications.
  •  
30.
  • Wetterskog, Erik, 1983-, et al. (författare)
  • Anomalous Magnetic Properties of Nanoparticles Arising from Defect Structures : Topotaxial Oxidation of Fe1-xO|Fe3-δO4 Core|Shell Nanocubes to Single-Phase Particles
  • 2013
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 7:8, s. 7132-7144
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we demonstrate that the anomalous magnetic properties of iron oxide nanoparticles are correlated with defects in their interior. We studied the evolution of microstructure and magnetic properties of biphasic core|shell Fe1–xO|Fe3−δO4 nanoparticles synthesized by thermal decomposition during their topotaxial oxidation to single-phase nanoparticles. Geometric phase analysis of high-resolution electron microscopy images reveals a large interfacial strain at the core|shell interface and the development of antiphase boundaries. Dark-field transmission electron microscopy and powder X-ray diffraction concur that, as the oxidation proceeds, the interfacial strain is released as the Fe1–xO core is removed but that the antiphase boundaries remain. The antiphase boundaries result in anomalous magnetic behavior, that is, a reduced saturation magnetization and exchange bias effects in single-phase nanoparticles. Our results indicate that internal defects play an important role in dictating the magnetic properties of iron oxide nanoparticles.
  •  
31.
  • Wetterskog, Erik, 1983- (författare)
  • Building crystals out of crystals : Synthesis, structure and magnetic properties of iron oxide nanoparticles and self-assembled mesocrystals
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is focused on the fabrication and characterization of self-assembled arrays of magnetic iron oxide (Fe3O4, γ-Fe2O3 and Fe1-xO) nanoparticles. The synthesis of spherical and cubic iron oxide nanocrystals, with sizes between 5 and 30 nm and narrow size distributions, is demonstrated, along with a rigorous morphological characterization of the cubic nanoparticles. The transformation of core|shell Fe1-xO|Fe3-δO4 particles into single-phase Fe3-δO4 particles is studied in detail. It is found that anti-phase boundaries in the particles result in the emergence of anomalous magnetic properties i.e. exchange bias, and a reduced saturation magnetization compared to that of bulk Fe3O4. Cubic nanocrystals are assembled into arrays possessing an exceptionally high degree of translational ordering and a high degree of crystallographic alignment. A combination of electron microscopy and small-angle X-ray scattering is used in the characterization of the 3D nanostructures. The directional (anisotropic) interactions in the 3D structures are modeled in an attempt to find a link between the nanocrystal morphology and the corresponding mesostructure. Here, the cohesive van der Waals energy is estimated for a system of nanocubes with a variable truncation. The assembly of nanocubes in magnetic fields of various strengths is systematically investigated. A perturbed mesocrystal growth habit is observed at intermediate fields, whereas at high field strengths, the assembly is dominated by ferrohydrodynamic instabilities. Last, magnetometry is used to study the collective magnetic properties of self-assembled nanocrystals. The magnetic susceptibility in a weak magnetic field is studied as a function of film thickness and particle size. An increase in the tendency to form ferromagnetic couplings  with decreasing film thickness can be established. This 2D to 3D crossover of the magnetic properties of the nanoparticle arrays can be related to a change in the magnetic vortex states.
  •  
32.
  • Wetterskog, Erik, et al. (författare)
  • Colossal Anisotropy of the Dynamic Magnetic Susceptibility in Low-Dimensional Nanocube Assemblies
  • 2018
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 12:2, s. 1403-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the ultimate goals of nanocrystal self-assembly is to transform nanoscale building blocks into a material that displays enhanced properties relative to the sum of its parts. Herein, we demonstrate that 1D needle shaped assemblies composed of Fe3-delta O4 nanocubes display a significant augmentation of the magnetic susceptibility and dissipation as compared to OD and 2D systems. The performance of the nanocube needles is highlighted by a colossal anisotropy factor defined as the ratio of the parallel to the perpendicular magnetization components. We show that the origin of this effect cannot be ascribed to shape anisotropy in its classical sense; as such, it has no analogy in bulk magnetic materials. The temperature-dependent anisotropy factors of the in- and out-of-phase components of the magnetization have an extremely strong particle size dependence and reach values of 80 and 2500, respectively, for the largest nanocubes in this study. Aided by simulations, we ascribe the anisotropy of the magnetic susceptibility, and its strong particle-size dependence to a synergistic coupling between the dipolar interaction field and a net anisotropy field resulting from a partial texture in the 1D nanocube needles.
  •  
33.
  • Wetterskog, Erik, et al. (författare)
  • Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays
  • 2014
  • Ingår i: Science and Technology of Advanced Materials. - : Informa UK Limited. - 1468-6996 .- 1878-5514. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we demonstrate how monodisperse iron oxide nanocubes and nanospheres with average sizes between 5 and 27 nm can be synthesized by thermal decomposition. The relative importance of the purity of the reactants, the ratio of oleic acid and sodium oleate, the maximum temperature, and the rate of temperature increase, on robust and reproducible size and shape-selective iron oxide nanoparticle synthesis are identified and discussed. The synthesis conditions that generate highly monodisperse iron oxide nanocubes suitable for producing large ordered arrays, or mesocrystals are described in detail.
  •  
34.
  • Wetterskog, Erik, et al. (författare)
  • Size and property bimodality in magnetic nanoparticle dispersions : single domain particles vs. strongly coupled nanoclusters
  • 2017
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 9:12, s. 4227-4235
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread use of magnetic nanoparticles in the biotechnical sector puts new demands on fast and quantitative characterization techniques for nanoparticle dispersions. In this work, we report the use of asymmetric flow field-flow fractionation (AF4) and ferromagnetic resonance (FMR) to study the properties of a commercial magnetic nanoparticle dispersion. We demonstrate the effectiveness of both techniques when subjected to a dispersion with a bimodal size/magnetic property distribution: i.e., a small superparamagnetic fraction, and a larger blocked fraction of strongly coupled colloidal nanoclusters. We show that the oriented attachment of primary nanocrystals into colloidal nanoclusters drastically alters their static, dynamic, and magnetic resonance properties. Finally, we show how the FMR spectra are influenced by dynamical effects; agglomeration of the superparamagnetic fraction leads to reversible line-broadening; rotational alignment of the suspended nanoclusters results in shape-dependent resonance shifts. The AF4 and FMR measurements described herein are fast and simple, and therefore suitable for quality control procedures in commercial production of magnetic nanoparticles.
  •  
35.
  •  
36.
  • Wetterskog, Erik, et al. (författare)
  • Tuning the structure and habit of iron oxide mesocrystals
  • 2016
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 8:34, s. 15571-15580
  • Tidskriftsartikel (refereegranskat)abstract
    • A precise control over the meso-and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and the quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6-12.6 nm) are isostructural with a body centred tetragonal (bct) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36
Typ av publikation
tidskriftsartikel (31)
konferensbidrag (3)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Wetterskog, Erik (30)
Bergström, Lennart (17)
Salazar-Alvarez, Ger ... (14)
Svedlindh, Peter (13)
Johansson, Christer (5)
Tai, Cheuk-Wai (4)
visa fler...
Agthe, Michael (4)
Ludwig, Frank (4)
Strömberg, Mattias (4)
Jonasson, Christian (3)
Olsson, Eva, 1960 (3)
Gunnarsson, Klas (3)
Mayence, Arnaud (2)
Gehrke, Nicole (2)
Gustafsson, Stefan, ... (2)
Wang, Yu (2)
Castro, A. (1)
Meyer, M. (1)
Nilsson, Lars (1)
Wang, Dong (1)
Johansson, C. (1)
Ahniyaz, Anwar (1)
Bergstrom, L. (1)
Seisenbaeva, Gulaim (1)
Kessler, Vadim (1)
Petronis, Sarunas, 1 ... (1)
Lyubartsev, Alexande ... (1)
Bergström, Lennart, ... (1)
Mouzon, Johanne (1)
Mamedov, Fikret, Ph. ... (1)
Kamali, Saeed (1)
Ahrentorp, Fredrik (1)
Zardán Gómez de la T ... (1)
Astalan, Andrea (1)
Blomgren, Jakob (1)
Lak, Aidin (1)
Van IJzendoorn, Leo ... (1)
Westphal, Fritz (1)
Gruettner, Cordula (1)
Akansel, Serkan (1)
Kumar, Ankit (1)
Brucas, Rimantas (1)
Husain, Sajid (1)
Chaudhary, Sujeet (1)
Lewin, Erik, Dr. 197 ... (1)
Edvinsson, Tomas, 19 ... (1)
Sommertune, Jens (1)
Fornara, Andrea (1)
Morales, P (1)
Qiu, Zhen (1)
visa färre...
Lärosäte
Uppsala universitet (27)
Stockholms universitet (19)
RISE (8)
Chalmers tekniska högskola (5)
Luleå tekniska universitet (1)
Lunds universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (35)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (35)
Teknik (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy