SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wheelock Craig E.) "

Sökning: WFRF:(Wheelock Craig E.)

  • Resultat 1-36 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loza, M. J., et al. (författare)
  • Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study
  • 2016
  • Ingår i: Respiratory Research. - : Springer Nature. - 1465-9921 .- 1465-993X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Methods: Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Results: Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Conclusions: Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. Trial registration:NCT01274507(ADEPT), registered October 28, 2010 and NCT01982162(U-BIOPRED), registered October 30, 2013.
  •  
2.
  • Bowden, John A., et al. (författare)
  • Harmonizing lipidomics : NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma
  • 2017
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 58:12, s. 2275-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra-and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium.jlr While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
  •  
3.
  • Kolmert, Johan, et al. (författare)
  • Urinary Leukotriene E-4 and Prostaglandin D-2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation A Clinical Observational Study
  • 2021
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - NEW YORK, USA : AMER THORACIC SOC. - 1073-449X .- 1535-4970. ; 203:1, s. 37-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: New approaches are needed to guide personalized treatment of asthma. Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping. Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma. Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE(2) pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE(2) metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD(2) metabolite 2,3-dinor-11 beta-PGF(2 alpha). High concentrations of LTE4 and PGD(2) metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOARED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers. Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.
  •  
4.
  • Badi, Yusef Eamon, et al. (författare)
  • Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma
  • 2022
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 149:1, s. 89-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases.Objective: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti–IL-22 (fezakinumab [FZ]) is enriched in severe asthma.Methods: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort.Results: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P <.05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P <.05) and particularly in neutrophilic and mixed granulocytic sputum (P <.05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways.Conclusions: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.
  •  
5.
  • Carlström, Karl E., et al. (författare)
  • Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes
  • 2019
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
  •  
6.
  • Emma, Rosalia, et al. (författare)
  • Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort
  • 2018
  • Ingår i: PLOS ONE. - : Public Library Science. - 1932-6203. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is believed to be a major driver of inflammation in smoking asthmatics. The U-BIOPRED project recruited a cohort of Severe Asthma smokers/ex-smokers (SAs/ex) and non-smokers (SAn) with extensive clinical and biomarker information enabling characterization of these subjects. We investigated oxidative stress in severe asthma subjects by analysing urinary 8-iso-PGF(2 alpha) and the mRNA-expression of the main pro-oxidant (NOX2; NOSs) and anti-oxidant (SODs; CAT; GPX1) enzymes in the airways of SAs/ex and SAn. All the severe asthma U-BIOPRED subjects were further divided into current smokers with severe asthma (CSA), ex-smokers with severe asthma (ESA) and non-smokers with severe asthma (NSA) to deepen the effect of active smoking. Clinical data, urine and sputum were obtained from severe asthma subjects. A bronchoscopy to obtain bronchial biopsy and brushing was performed in a subset of subjects. The main clinical data were analysed for each subset of subjects (urine-8-iso-PGF(2 alpha); IS-transcriptomics; BB-transcriptomics; BBrtranscriptomics). Urinary 8-iso-PGF(2 alpha) was quantified using mass spectrometry. Sputum, bronchial biopsy and bronchial brushing were processed for mRNA expression microarray analysis. Urinary 8-iso-PGF(2 alpha) was increased in SAs/ex, median (IQR) = 31.7 (24.5 +/- 44.7) ng/mmol creatinine, compared to SAn, median (IQR) = 26.6 (19.6 +/- 36.6) ng/mmol creatinine (p< 0.001), and in CSA, median (IQR) = 34.25 (24.4 +/- 47.7), vs. ESA, median (IQR) = 29.4 (22.3 +/- 40.5), and NSA, median (IQR) = 26.5 (19.6 +/- 16.6) ng/mmol creatinine (p = 0.004). Sputum mRNA expression of NOX2 was increased in SAs/ex compared to SAn (probe sets 203922_PM_s_at fold-change = 1.05 p = 0.006; 203923_PM_s_at fold-change = 1.06, p = 0.003; 233538_PM_s_at fold-change = 1.06, p = 0.014). The mRNA expression of antioxidant enzymes were similar between the two severe asthma cohorts in all airway samples. NOS2 mRNA expression was decreased in bronchial brushing of SAs/ex compared to SAn (fold-change = -1.10; p = 0.029). NOS2 mRNA expression in bronchial brushing correlated with FeNO (Kendal's Tau = 0.535; p< 0.001). From clinical and inflammatory analysis, FeNO was lower in CSA than in ESA in all the analysed subject subsets (p< 0.01) indicating an effect of active smoking. Results about FeNO suggest its clinical limitation, as inflammation biomarker, in severe asthma active smokers. These data provide evidence of greater systemic oxidative stress in severe asthma smokers as reflected by a significant changes of NOX2 mRNA expression in the airways, together with elevated urinary 8-iso-PGF(2 alpha) in the smokers/ex-smokers group.
  •  
7.
  • Kirwan, Gemma M, et al. (författare)
  • Building Multivariate Systems Biology Models
  • 2012
  • Ingår i: Analytical Chemistry. - Washington : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 84:16, s. 7064-7071
  • Tidskriftsartikel (refereegranskat)abstract
    • Systems biology methods using large-scale "omics" data sets face unique challenges: integrating and analyzing near limitless data space, while recognizing and removing systematic variation or noise. Herein we propose a complementary multivariate analysis workflow to both integrate "omics" data from disparate sources and analyze the results for specific and unique sample correlations. This workflow combines principal component analysis (PCA), orthogonal projections to latent structures discriminate analysis (OPLS-DA), orthogonal 2 projections to latent structures (O2PLS), and shared and unique structures (SUS) plots. The workflow is demonstrated using data from a study in which ApoE3Leiden mice were fed an atherogenic diet consisting of increasing cholesterol levels followed by therapeutic intervention (fenofibrate, rosuvastatin, and LXR activator T-0901317). The levels of structural lipids (lipidomics) and free fatty acids in liver were quantified via liquid chromatography-mass spectrometry (LC-MS). The complementary workflow identified diglycerides as key hepatic metabolites affected by dietary cholesterol and drug intervention. Modeling of the three therapeutics for mice fed a high-cholesterol diet further highlighted diglycerides as metabolites of interest in atherogenesis, suggesting a role in eliciting chronic liver inflammation. In particular, O2PLS-based SUS2 plots showed that treatment with T-0901317 or rosuvastatin returned the diglyceride profile in high-cholesterol-fed mice to that of control animals.
  •  
8.
  • Lundstrom, Susanna L., et al. (författare)
  • Allergic Asthmatics Show Divergent Lipid Mediator Profiles from Healthy Controls Both at Baseline and following Birch Pollen Provocation
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a respiratory tract disorder characterized by airway hyper-reactivity and chronic inflammation. Allergic asthma is associated with the production of allergen-specific IgE and expansion of allergen-specific T-cell populations. Progression of allergic inflammation is driven by T-helper type 2 (Th2) mediators and is associated with alterations in the levels of lipid mediators. Objectives: Responses of the respiratory system to birch allergen provocation in allergic asthmatics were investigated. Eicosanoids and other oxylipins were quantified in the bronchoalveolar lumen to provide a measure of shifts in lipid mediators associated with allergen challenge in allergic asthmatics. Methods: Eighty-seven lipid mediators representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened via LC-MS/MS following off-line extraction of bronchoalveolar lavage fluid (BALF). Multivariate statistics using OPLS were employed to interrogate acquired oxylipin data in combination with immunological markers. Results: Thirty-two oxylipins were quantified, with baseline asthmatics possessing a different oxylipin profile relative to healthy individuals that became more distinct following allergen provocation. The most prominent differences included 15-LOX-derived omega-3 and omega-6 oxylipins. Shared-and-Unique-Structures (SUS)-plot modeling showed a correlation (R-2 = 0.7) between OPLS models for baseline asthmatics ((RY)-Y-2[cum] = 0.87, Q(2)[cum] = 0.51) and allergen-provoked asthmatics ((RY)-Y-2[cum] = 0.95, Q(2)[cum] = 0.73), with the majority of quantified lipid mediators and cytokines contributing equally to both groups. Unique structures for allergen provocation included leukotrienes (LTB4 and 6-trans-LTB4), CYP-derivatives of linoleic acid (epoxides/diols), and IL-10. Conclusions: Differences in asthmatic relative to healthy profiles suggest a role for 15-LOX products of both omega-6 and omega-3 origin in allergic inflammation. Prominent differences at baseline levels indicate that non-symptomatic asthmatics are subject to an underlying inflammatory condition not observed with other traditional mediators. Results suggest that oxylipin profiling may provide a sensitive means of characterizing low-level inflammation and that even individuals with mild disease display distinct phenotypic profiles, which may have clinical ramifications for disease.
  •  
9.
  • Lundström, Susanna L., et al. (författare)
  • Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure
  • 2011
  • Ingår i: PLOS ONE. - San Francisco, CA : Public Library of Science. - 1932-6203. ; 6:8, s. e23864-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.Objectives: This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Methods: Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPAR gamma). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Results: Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and alpha-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Conclusions: Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.
  •  
10.
  • Martens, Marvin, et al. (författare)
  • ELIXIR and Toxicology : a community in development
  • 2021
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 1129-1129
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.  
  •  
11.
  • Yang, Ting, et al. (författare)
  • Genetic Abrogation of Adenosine A(3) Receptor Prevents Uninephrectomy and High Salt-Induced Hypertension
  • 2016
  • Ingår i: Journal of the American Heart Association. - 2047-9980. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Early-life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A(3) receptor in cardiovascular diseases is not clear. In this study, gene-modified mice were used to investigate the hypothesis that lack of A(3) signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX-HS) in mice.Methods and Results - Wild-type (A(3)(+/+)) mice subjected to UNX-HS developed hypertension compared with controls (mean arterial pressure 106 +/- 3 versus 82 +/- 3 mm Hg; P<0.05) and displayed an impaired metabolic phenotype (eg, increased adiposity, reduced glucose tolerance, hyperinsulinemia). These changes were associated with both cardiac hypertrophy and fibrosis together with renal injuries and proteinuria. All of these pathological hallmarks were significantly attenuated in the A(3)(-/-) mice. Mechanistically, absence of A(3) receptors protected from UNX-HS-associated increase in renal NADPH oxidase activity and Nox2 expression. In addition, circulating cytokines including interleukins 1 beta, 6, 12, and 10 were increased in A(3)(+/+) following UNX-HS, but these cytokines were already elevated in naive A(3)(-/-) mice and did not change following UNX-HS.Conclusions - Reduction in nephron number combined with chronic HS intake is associated with oxidative stress, chronic inflammation, and development of hypertension in mice. Absence of adenosine A(3) receptor signaling was strongly protective in this novel mouse model of renal and cardiovascular disease.
  •  
12.
  • Yasinska, Valentyna, et al. (författare)
  • Low levels of endogenous anabolic androgenic steroids in females with severe asthma taking corticosteroids
  • 2023
  • Ingår i: ERJ Open Research. - : European Respiratory Society. - 2312-0541. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure.Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study.Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12–18 months.Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.
  •  
13.
  • Al-Mashhadi, Ammar Nadhom Farman, et al. (författare)
  • Changes in arterial pressure and markers of nitric oxide homeostasis and oxidative stress following surgical correction of hydronephrosis in children
  • 2018
  • Ingår i: Pediatric nephrology (Berlin, West). - : Springer. - 0931-041X .- 1432-198X. ; 33:4, s. 639-649
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Recent clinical studies have suggested an increased risk of elevated arterial pressure in patients with hydronephrosis. Animals with experimentally induced hydronephrosis develop hypertension, which is correlated to the degree of obstruction and increased oxidative stress. In this prospective study we investigated changes in arterial pressure, oxidative stress, and nitric oxide (NO) homeostasis following correction of hydronephrosis.Methods Ambulatory arterial pressure (24 h) was monitored in pediatric patients with hydronephrosis (n = 15) before and after surgical correction, and the measurements were compared with arterial pressure measurements in two control groups, i.e. healthy controls (n = 8) and operated controls (n = 8). Markers of oxidative stress and NO homeostasis were analyzed in matched urine and plasma samples.Results The preoperative mean arterial pressure was significantly higher in hydronephrotic patients [83 mmHg; 95% confidence interval (CI) 80–88 mmHg] than in healthy controls (74 mmHg; 95% CI 68–80 mmHg; p < 0.05), and surgical correction of ureteral obstruction reduced arterial pressure (76 mmHg; 95% CI 74–79 mmHg; p < 0.05). Markers of oxidative stress (i.e., 11- dehydroTXB2, PGF2α, 8-iso-PGF2α, 8,12-iso-iPF2α-VI) were significantly increased (p < 0.05) in patients with hydronephrosis compared with both control groups, and these were reduced following surgery (p < 0.05). Interestingly, there was a trend for increased NO synthase activity and signaling in hydronephrosis, which may indicate compensatory mechanism(s).Conclusion This study demonstrates increased arterial pressure and oxidative stress in children with hydronephrosis compared with healthy controls, which can be restored to normal levels by surgical correction of the obstruction. Once reference data on ambulatory blood pressure in this young age group become available, we hope cut-off values can be defined for deciding whether or not to correct hydronephrosis surgically.Keywords Blood pressure . Hydronephrosis . Hypertension . Nitric oxide . Oxidative stress . Ureteral obstruction 
  •  
14.
  • Alhamdow, Ayman, et al. (författare)
  • Low-level exposure to polycyclic aromatic hydrocarbons is associated with reduced lung function among Swedish young adults
  • 2021
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 197
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to adverse pulmonary effects. However, the impact of low-level environmental PAH exposure on lung function in early adulthood remains uncertain. Objectives: To evaluate the associations between urinary PAH metabolites and lung function parameters in young adults. Methods: Urinary metabolites of pyrene, phenanthrene, and fluorene were analysed in 1000 young adults from Sweden (age 22–25 years) using LC-MS/MS. Lung function and eosinophilic airway inflammation were measured by spirometry and exhaled nitric oxide fraction (FeNO), respectively. Linear regression analysis was used to evaluate associations between PAH metabolites and the outcomes. Results: Median urinary concentrations of 1-OH-pyrene, ∑OH-phenanthrene, and ∑OH-fluorene were 0.066, 0.36, 0.22 μg/L, respectively. We found inverse associations of ∑OH-phenanthrene and ∑OH-fluorene with FEV1 and FVC, as well as between 1-OH-pyrene and FEV1/FVC ratio (adjusted P < 0.05; all participants). An increase of 1% in ∑OH-fluorene was associated with a decrease of 73 mL in FEV1 and 59 mL in FVC. In addition, ∑OH-phenanthrene concentrations were, in a dose-response manner, inversely associated with FEV1 (B from −109 to −48 compared with the lowest quartile of ∑OH-phenanthrene; p trend 0.004) and FVC (B from −159 to −102 compared with lowest quartile; p-trend <0.001). Similar dose-response associations were also observed between ∑OH-fluorene and FEV1 and FVC, as well as between 1-OH-pyrene and FEV1/FVC (p-trend <0.05). There was no association between PAH exposure and FeNO, nor was there an interaction with smoking, sex, or asthma. Conclusion: Low-level PAH exposure was, in a dose-response manner, associated with reduced lung function in young adults. Our findings have public health implications due to i) the widespread occurrence of PAHs in the environment and ii) the clinical relevance of lung function in predicting all-cause and cardiovascular disease mortality.
  •  
15.
  • Artiach, Gonzalo, et al. (författare)
  • Omega-3 Polyunsaturated Fatty Acids Decrease Aortic Valve Disease through the Resolvin E1 and ChemR23 Axis.
  • 2020
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 142, s. 776-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aortic valve stenosis (AVS), which is the most common valvular heart disease, causes a progressive narrowing of the aortic valve as a consequence of thickening and calcification of the aortic valve leaflets. The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in cardiovascular prevention have been recently demonstrated in a large randomized controlled trial. In addition, n-3 PUFA serve as the substrate for the synthesis of specialized pro-resolving mediators (SPMs), which are known by their potent beneficial anti-inflammatory, pro-resolving and tissue-modifying properties in cardiovascular disease. However, the effects of n-3 PUFA and SPMs on AVS have not yet been determined. The aim of this study was to identify the role of n-3 PUFA-derived SPMs in relation to the development of AVS. Methods: Lipidomic and transcriptomic analyses were performed in human tricuspid aortic valves. Apoe-/- mice and wire injury in C57BL/6J mice were used as models for mechanistic studies. Results: We found that n-3 PUFA incorporation into human stenotic aortic valves was higher in non-calcified regions compared with calcified regions. LC-MS-MS based lipid mediator lipidomics identified that the n-3 PUFA-derived SPM resolvin E1 (RvE1) was dysregulated in calcified regions and acted as a calcification inhibitor. Apoe-/- mice expressing the Caenorhabditis elegans Fat-1 transgene (Fat-1tgxApoe-/-), which enables the endogenous synthesis of n-3 PUFA, increased valvular n-3 PUFA content, exhibited reduced valve calcification, lower aortic valve leaflet area, increased M2 macrophage polarization and improved echocardiographic parameters. Finally, abrogation of the RvE1 receptor ChemR23 enhanced disease progression, and the beneficial effects of Fat-1tg were abolished in the absence of ChemR23. Conclusions: n-3 PUFA-derived RvE1 and its receptor ChemR23 emerge as a key axis in the inhibition of AVS progression, and may represent a novel potential therapeutic opportunity to be evaluated in patients with AVS.
  •  
16.
  • Bergqvist, Filip, et al. (författare)
  • Inhibition of mPGES-1 or COX-2 Results in Different Proteomic and Lipidomic Profiles in A549 Lung Cancer Cells
  • 2019
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological inhibition of microsomal prostaglandin E synthase (mPGES)-1 for selective reduction in prostaglandin E-2 (PGE(2)) biosynthesis is protective in experimental models of cancer and inflammation. Targeting mPGES-1 is envisioned as a safer alternative to traditional non-steroidal anti-inflammatory drugs (NSAIDs). Herein, we compared the effects of mPGES-1 inhibitor Compound III (CIII) with the cyclooxygenase (COX)-2 inhibitor NS-398 on protein and lipid profiles in interleukin (IL)-1 beta-induced A549 lung cancer cells using mass spectrometry. Inhibition of mPGES-1 decreased PGE(2) production and increased PGF(2 alpha) and thromboxane B-2 (TXB2) formation, while inhibition of COX-2 decreased the production of all three prostanoids. Our proteomics results revealed that CIII downregulated multiple canonical pathways including eIF2, eIF4/P70S6K, and mTOR signaling, compared to NS-398 that activated these pathways. Moreover, pathway analysis predicted that CIII increased cell death of cancer cells (Z = 3.8, p = 5.1E-41) while NS-398 decreased the same function (Z = -5.0, p = 6.5E-35). In our lipidomics analyses, we found alterations in nine phospholipids between the two inhibitors, with a stronger alteration in the lysophospholipid (LPC) profile with NS-398 compared to CIII. Inhibition of mPGES-1 increased the concentration of sphinganine and dihydroceramide (C16:0D hCer), while inhibition of COX-2 caused a general decrease in most ceramides, again suggesting different effects on cell death between the two inhibitors. We showed that CIII decreased proliferation and potentiated the cytotoxic effect of the cytostatic drugs cisplatin, etoposide, and vincristine when investigated in a live cell imaging system. Our results demonstrate differences in protein and lipid profiles after inhibition of mPGES-1 or COX-2 with important implications on the therapeutic potential of mPGES-1 inhibitors as adjuvant treatment in cancer. We encourage further investigations to illuminate the clinical benefit of mPGES-1 inhibitors in cancer.
  •  
17.
  • Burla, Bo, et al. (författare)
  • MS-based lipidomics of human blood plasma : a community-initiated position paper to develop accepted guidelines
  • 2018
  • Ingår i: Journal of Lipid Research. - : American Society for Biochemistry and Molecular Biology. - 0022-2275 .- 1539-7262. ; 59:10, s. 2001-2017
  • Tidskriftsartikel (refereegranskat)abstract
    • Human blood is a self-regenerating lipid-rich biological fluid that is routinely collected in hospital settings. The inventory of lipid molecules found in blood plasma (plasma lipidome) offers insights into individual metabolism and physiology in health and disease. Disturbances in the plasma lipidome also occur in conditions that are not directly linked to lipid metabolism; therefore, plasma lipidomics based on MS is an emerging tool in an array of clinical diagnostics and disease management. However, challenges exist in the translation of such lipidomic data to clinical applications. These relate to the reproducibility, accuracy, and precision of lipid quantitation, study design, sample handling, and data sharing. This position paper emerged from a workshop that initiated a community-led process to elaborate and define a set of generally accepted guidelines for quantitative MS-based lipidomics of blood plasma or serum, with harmonization of data acquired on different instrumentation platforms across independent laboratories as an ultimate goal. We hope that other fields may benefit from and follow such a precedent.
  •  
18.
  • Carlström, Mattias, et al. (författare)
  • Peritoneal dialysis impairs nitric oxide homeostasis and may predispose infants with low systolic blood pressure to cerebral ischemia
  • 2016
  • Ingår i: Nitric Oxide - Biology and Chemistry. - : Elsevier BV. - 1089-8603 .- 1089-8611. ; 58, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & purpose Infants on chronic peritoneal dialysis (PD) have an increased risk of developing neurological morbidities; however, the underlying biological mechanisms are poorly understood. In this clinical study, we investigated whether PD-mediated impairment of nitric oxide (NO) bioavailability and signaling, in patients with persistently low systolic blood pressure (SBP), can explain the occurrence of cerebral ischemia. Methods & results Repeated blood pressure measurements, serial neuroimaging studies, and investigations of systemic nitrate and nitrite levels, as well as NO signaling, were performed in ten pediatric patients on PD. We consistently observed the loss of both inorganic nitrate (-17 ± 3%, P < 0.05) and nitrite (-34 ± 4%, P < 0.05) during PD, which may result in impairment of the nitrate-nitrite-NO pathway. Indeed, PD was associated with significant reduction of cyclic guanosine monophosphate levels (-59.4 ± 15%, P < 0.05). This reduction in NO signaling was partly prevented by using a commercially available PD solution supplemented with l-arginine. Although PD compromised nitrate-nitrite-NO signaling in all cases, only infants with persistently low SBP developed ischemic cerebral complications. Conclusions Our data suggests that PD impairs NO homeostasis and predisposes infants with persistently low SBP to cerebral ischemia. These findings improve current understanding of the pathogenesis of infantile cerebral ischemia induced by PD and may lead to the new treatment strategies to reduce neurological morbidities.
  •  
19.
  •  
20.
  • Edsjö, Anders, et al. (författare)
  • Building a precision medicine infrastructure at a national level : The Swedish experience
  • 2023
  • Ingår i: Cambridge Prisms: Precision Medicine. - : Cambridge University Press. - 2752-6143. ; 1
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.
  •  
21.
  • Idborg, Helena, et al. (författare)
  • Circulating Levels of Interferon Regulatory Factor-5 Associates With Subgroups of Systemic Lupus Erythematosus Patients
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic Lupus Erythematosus (SLE) is a heterogeneous autoimmune disease, which currently lacks specific diagnostic biomarkers. The diversity within the patients obstructs clinical trials but may also reflect differences in underlying pathogenesis. Our objective was to obtain protein profiles to identify potential general biomarkers of SLE and to determine molecular subgroups within SLE for patient stratification. Plasma samples from a cross-sectional study of well-characterized SLE patients (n = 379) and matched population controls (n = 316) were analyzed by antibody suspension bead array targeting 281 proteins. To investigate the differences between SLE and controls, Mann-Whitney U-test with Bonferroni correction, generalized linear modeling and receiver operating characteristics (ROC) analysis were performed. K-means clustering was used to identify molecular SLE subgroups. We identified Interferon regulating factor 5 (IRF5), solute carrier family 22 member 2 (SLC22A2) and S100 calcium binding protein A12 (S100A12) as the three proteins with the largest fold change between SLE patients and controls (SLE/Control = 1.4, 1.4, and 1.2 respectively). The lowest p-values comparing SLE patients and controls were obtained for S100A12, Matrix metalloproteinase-1 (MMP1) and SLC22A2 (p(adjusted) = 3 x 10(-9), 3 x 10(-6), and 5 x 10(-6) respectively). In a set of 15 potential biomarkers differentiating SLE patients and controls, two of the proteins were transcription factors, i.e., IRF5 and SAM pointed domain containing ETS transcription factor (SPDEF). IRF5 was up-regulated while SPDEF was found to be down-regulated in SLE patients. Unsupervised clustering of all investigated proteins identified three molecular subgroups among SLE patients, characterized by (1) high levels of rheumatoid factor-IgM, (2) low IRF5, and (3) high IRF5. IRF5 expressing microparticles were analyzed by flow cytometry in a subset of patients to confirm the presence of IRF5 in plasma and detection of extracellular IRF5 was further confirmed by immunoprecipitation-mass spectrometry (IP-MS). Interestingly IRF5, a known genetic risk factor for SLE, was detected extracellularly and suggested by unsupervised clustering analysis to differentiate between SLE subgroups. Our results imply a set of circulating molecules as markers of possible pathogenic importance in SLE. We believe that these findings could be of relevance for understanding the pathogenesis and diversity of SLE, as well as for selection of patients in clinical trials.
  •  
22.
  • Johansson, Åsa, et al. (författare)
  • Precision medicine in complex diseases - : Molecular subgrouping for improved prediction and treatment stratification
  • 2023
  • Ingår i: Journal of Internal Medicine. - : John Wiley & Sons. - 1365-2796 .- 0954-6820. ; 294:4, s. 378-396
  • Forskningsöversikt (refereegranskat)abstract
    • Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.
  •  
23.
  • Johnsson, Anna-Karin, et al. (författare)
  • COX-1 dependent biosynthesis of 15-hydroxyeicosatetraenoic acid in human mast cells
  • 2021
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier. - 1388-1981 .- 1879-2618. ; 1866:5
  • Tidskriftsartikel (refereegranskat)abstract
    • 15-hydroxyeicosatetraenoic acid (15-HETE) is an arachidonic acid derived lipid mediator which can originate both from 15-lipoxygenase (15-LOX) activity and cyclooxygenase (COX) activity. The enzymatic source determines the enantiomeric profile of the 15-HETE formed. 15-HETE is the most abundant arachidonic acid metabolite in the human lung and has been suggested to influence the pathophysiology of asthma. Mast cells are central effectors in asthma, but there are contradictory reports on whether 15-HETE originates from 15-LOX or COX in human mast cells. This prompted the current study where the pathway of 15-HETE biosynthesis was examined in three human mast cell models; the cell line LAD2, cord blood derived mast cells (CBMC) and tissue isolated human lung mast cells (HLMC). Levels and enantiomeric profiles of 15-HETE and levels of the downstream metabolite 15-KETE, were analyzed by UPLC-MS/MS after stimulation with anti-IgE or calcium ionophore A23187 in the presence and absence of inhibitors of COX isoenzymes. We found that 15-HETE was produced by COX-1 in human mast cells under these experimental conditions. Unexpectedly, chiral analysis showed that the 15(R) isomer was predominant and gradually accumulated, whereas the 15(S) isomer was metabolized by the 15hydroxyprostaglandin dehydrogenase. We conclude that during physiological conditions, i.e., without addition of exogenous arachidonic acid, both enantiomers of 15-HETE are produced by COX-1 in human mast cells but that the 15(S) isomer is selectively depleted by undergoing further metabolism. The study highlights that 15-HETE cannot be used as an indicator of 15-LOX activity for cellular studies, unless chirality and sensitivity to pharmacologic inhibition is determined.
  •  
24.
  • Johnsson, Anna-Karin, et al. (författare)
  • Selective inhibition of prostaglandin D-2 biosynthesis in human mast cells to overcome need for multiple receptor antagonists : Biochemical consequences
  • 2021
  • Ingår i: Clinical and Experimental Allergy. - : John Wiley & Sons. - 0954-7894 .- 1365-2222. ; 51:4, s. 594-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The major mast cell prostanoid PGD(2) is targeted for therapy of asthma and other diseases, because the biological actions include bronchoconstriction, vasodilation and regulation of immune cells mediated by three different receptors. It is not known if the alternative to selectively inhibit the biosynthesis of PGD(2) affects release of other prostanoids in human mast cells. Objectives To determine the biochemical consequences of inhibition of the hematopoietic prostaglandin D synthase (hPGDS) PGD(2) in human mast cells. Methods Four human mast cell models, LAD2, cord blood derived mast cells (CBMC), peripheral blood derived mast cells (PBMC) and human lung mast cells (HLMC), were activated by anti-IgE or ionophore A23187. Prostanoids were measured by UPLC-MS/MS. Results All mast cells almost exclusively released PGD(2) when activated by anti-IgE or A23187. The biosynthesis was in all four cell types entirely initiated by COX-1. When pharmacologic inhibition of hPGDS abolished formation of PGD(2), PGE(2) was detected and release of TXA(2) increased. Conversely, when the thromboxane synthase was inhibited, levels of PGD(2) increased. Adding exogenous PGH(2) confirmed predominant conversion to PGD(2) under control conditions, and increased levels of TXB2 and PGE(2) when hPGDS was inhibited. However, PGE(2) was formed by non-enzymatic degradation. Conclusions Inhibition of hPGDS effectively blocks mast cell dependent PGD(2) formation. The inhibition was associated with redirected use of the intermediate PGH(2) and shunting into biosynthesis of TXA(2). However, the levels of TXA(2) did not reach those of PGD(2) in naive cells. It remains to determine if this diversion occurs in vivo and has clinical relevance.
  •  
25.
  • Larsen, Filip J, et al. (författare)
  • Dietary nitrate reduces resting metabolic rate : a randomized, crossover study in humans.
  • 2014
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 99:4, s. 843-50
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Nitrate, which is an inorganic anion abundant in vegetables, increases the efficiency of isolated human mitochondria. Such an effect might be reflected in changes in the resting metabolic rate (RMR) and formation of reactive oxygen species. The bioactivation of nitrate involves its active accumulation in saliva followed by a sequential reduction to nitrite, nitric oxide, and other reactive nitrogen species.OBJECTIVE: We studied effects of inorganic nitrate, in amounts that represented a diet rich in vegetables, on the RMR in healthy volunteers.DESIGN: In a randomized, double-blind, crossover study, we measured the RMR by using indirect calorimetry in 13 healthy volunteers after a 3-d dietary intervention with sodium nitrate (NaNO3) or a placebo (NaCl). The nitrate dose (0.1 mmol · kg(-1) · d(-1)) corresponded to the amount in 200-300 g spinach, beetroot, lettuce, or other vegetable that was rich in nitrate. Effects of direct nitrite exposure on cell respiration were studied in cultured human primary myotubes.RESULTS: The RMR was 4.2% lower after nitrate compared with placebo administration, and the change correlated strongly to the degree of nitrate accumulation in saliva (r(2) = 0.71). The thyroid hormone status, insulin sensitivity, glucose uptake, plasma concentration of isoprostanes, and total antioxidant capacity were unaffected by nitrate. The administration of nitrite to human primary myotubes acutely inhibited respiration.CONCLUSIONS: Dietary inorganic nitrate reduces the RMR. This effect may have implications for the regulation of metabolic function in health and disease.
  •  
26.
  •  
27.
  • Maric, Jovana, et al. (författare)
  • Cytokine-induced endogenous production of prostaglandin D-2 is essential for human group 2 innate lymphoid cell activation
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : MOSBY-ELSEVIER. - 0091-6749 .- 1097-6825. ; 143:6, s. 2202-2214.e5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. Methods: The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. Results: We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. Conclusion: PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.
  •  
28.
  • Mittal, Monica, et al. (författare)
  • Investigation of calcium-dependent activity and conformational dynamics of zebra fish 12-lipoxygenase
  • 2017
  • Ingår i: Biochimica et Biophysica Acta - General Subjects. - : Elsevier BV. - 0304-4165. ; 1861:8, s. 2099-2111
  • Tidskriftsartikel (refereegranskat)abstract
    • Background A 12-lipoxygenase in zebra fish (zf12-LOX) was found to be required for normal embryonic development and LOXs are of great interest for targeted drug designing. In this study, we investigate the structural-functional aspects of zf12-LOX in response to calcium. Methods A soluble version of zf12-LOX was created by mutagenesis. Based on multiple sequence alignment, we mutated the putative calcium-responsive amino acids in N-PLAT domain of soluble zf12-LOX. Using a series of biophysical methods, we ascertained the oligomeric state, stability, structural integrity and conformational changes of zf12-LOX in response to calcium. We also compared the biophysical properties of soluble zf12-LOX with the mutant in the absence and presence of calcium. Results Here we provide a detailed characterization of soluble zf12-LOX and the mutant. Both proteins exist as compact monomers in solution, however the enzyme activity of soluble zf12-LOX is significantly increased in presence of calcium. We find that the stimulatory effect of calcium on zf12-LOX is related to a change in protein structure as observed by SAXS, adopting an open-state. In contrast, enzyme with a mutated calcium regulatory site has reduced activity-response to calcium and restricted large re-modeling, suggesting that it retains a closed-state in response to calcium. Taken together, our study suggests that Ca2 +-dependent regulation is associated with different domain conformation(s) that might change the accessibility to substrate-binding site in response to calcium. General significance The study can be broadly implicated in better understanding the mode(s) of action of LOXs, and the enzymes regulated by calcium in general.
  •  
29.
  • Oresic, Matej, 1967-, et al. (författare)
  • Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health
  • 2020
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 10:11
  • Forskningsöversikt (refereegranskat)abstract
    • Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the "chemical exposome" (exposures to environmental chemicals), affect the host's metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
  •  
30.
  • Peleli, Maria, et al. (författare)
  • Renal denervation attenuates hypertension and renal dysfunction in a model of cardiovascular and renal disease, which is associated with reduced NADPH and xanthine oxidase activity
  • 2017
  • Ingår i: Redox Biology. - : ELSEVIER SCIENCE BV. - 2213-2317. ; 13, s. 522-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is considered a central pathophysiological event in cardiovascular disease, including hypertension. Early age reduction in renal mass is associated with hypertension and oxidative stress in later life, which is aggravated by increased salt intake. The aim of the present study was to examine if renal sympathetic denervation can exert blood pressure lowering effects in uninephrectomized (UNX) rats (3-week old) fed with high salt (HS, 4%; w/w) diet for 4 weeks. Moreover, we investigated if renal denervation is associated with changes in NADPH and xanthine oxidase-derived reactive oxygen species. Rats with UNX + HS had reduced renal function, elevated systolic and diastolic arterial pressures, which was accompanied by increased heart weight, and cardiac superoxide production compared to sham operated Controls. UNX + HS was also associated with higher expression and activity of NADPH and xanthine oxidase in the kidney. Renal denervation in rats with UNX + HS attenuated the development of hypertension and cardiac hypertrophy, but also improved glomerular filtration rate and reduced proteinuria. Mechanistically, renal de nervation was associated with lower expression and activity of both NADPH oxidase and xanthine oxidase in the kidney, but also reduced superoxide production in the heart. In conclusion, our study shows for the first time that renal denervation has anti-hypertensive, cardio- and reno-protective effects in the UNX + HS model, which can be associated with decreased NADPH oxidase- and xanthine oxidase-derived reactive oxygen species (i.e., superoxide and hydrogen peroxide) in the kidney.
  •  
31.
  • Reinke, Stacey N., et al. (författare)
  • OnPLS-Based Multi-Block Data Integration : A Multivariate Approach to Interrogating Biological Interactions in Asthma
  • 2018
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 90:22, s. 13400-13408
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a Multi projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model. This study combined OnPLS and MB-VIOP with interactive visualization methods to interrogate an exemplar multiomics study, using a subset of 22 individuals from an asthma cohort. Joint data structure in six data blocks was assessed: transcriptomics; metabolomics; targeted assays for sphingolipids, oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying differences between healthy controls and asthmatics and a disease sex interaction, respectively. The interactions between features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1, which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS), providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate hypotheses from multiomics studies and inform biology.
  •  
32.
  • Sevelsted, Astrid, et al. (författare)
  • Effect of perfluoroalkyl exposure in pregnancy and infancy on intrauterine and childhood growth and anthropometry. Sub study from COPSAC2010 birth cohort
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Perfluoroalkyl substances PFOS and PFOA are persistent and bioaccumulative exogenous chemicals in the human body with a range of suspected negative health effects. It is hypothesised that exposure during prenatal and early postnatal life might have particularly detrimental effects on intrauterine and childhood growth. In a Dan-ish longitudinal mother-child cohort we investigate effect of PFOS and PFOA in pregnancy and infancy on intrauter-ine and childhood growth and anthropometry.Methods COPSAC2010 is an ongoing population based mother-child cohort of 738 pregnant women and their children followed from 24 week gestation with longitudinal deep clinical phenotyping until age 10 years. In this observational cohort sub study plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics in the mothers at week 24 and 1 week postpartum and in the children at ages 6 and 18 months and calibrated using a targeted pipe-line. We examined associations to intrauterine and childhood growth and anthropometry, including interactions with child sex. Untargeted and targeted blood metabolomics profiles were integrated to investigate underlying mechanisms.Findings Pregnancy plasma PFOA concentrations were associated with lower birth size -0.19 [-0.33; -0.05] BMI z-score per 1-ng/mL and increased childhood height (z-scored) at age 6: 0.18 [0.05; 0.31], but there was no association between childs' own infancy plasma PFOA concentration and height. Pregnancy plasma PFOS concentrations were also associated with lower birth BMI (-0.04 [-0.08; -0.01]), but in childhood pregnancy plasma PFOS con-centration interacted with child sex on BMI and fat percentage at 6 years with negative associations in girls and positive in boys. The effect of maternal plasma PFOS concentration on lower girl BMI was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.08). Similarly the effect of maternal plasma PFOS concentration on higher boy fat percentage was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.07). Infancy concentrations of plasma PFOS associated with lower height in childhood, -0.06 z-score at age 6 [-0.19; -0.03].Interpretation Higher PFOS and PFOA plasma concentrations during pregnancy had detrimental effects on fetal growth. The effects on childhood growth were not similar as PFOA increased child height, opposite of PFOS in mul-tipollutant models suggesting a differing fetal programming effect. Sex specific growth effects were borderline medi-ated through an altered lactosyl-ceramide metabolism, proposing a possible mechanism of PFOS that has long-lasting health consequences in this observational study.
  •  
33.
  • Snowden, Stuart G., et al. (författare)
  • High-dose simvastatin exhibits enhanced lipid-lowering effects relative to simvastatin/ezetimibe combination therapy
  • 2014
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 1942-325X .- 1942-3268. ; 7:6, s. 955-964
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins are the frontline in cholesterol reduction therapies; however, their use in combination with agents that possess complimentary mechanisms of action may achieve further reductions in low-density lipoprotein cholesterol. Thirty-nine patients were treated with either 80 mg simvastatin (n=20) or 10 mg simvastatin plus 10 mg ezetimibe (n=19) for 6 weeks. Dosing was designed to produce comparable low-density lipoprotein cholesterol reductions, while enabling assessment of potential simvastatin-associated pleiotropic effects. Baseline and post-treatment plasma were analyzed for lipid mediators (eg, eicosanoids and endocannabinoids) and structural lipids by liquid chromatography tandem mass spectrometry. After statistical analysis and orthogonal projections to latent structures multivariate modeling, no changes were observed in lipid mediator levels, whereas global structural lipids were reduced in response to both monotherapy (R(2)Y=0.74; Q(2)=0.66; cross-validated ANOVA P=7.0×10(-8)) and combination therapy (R(2)Y=0.67; Q(2)=0.54; cross-validated ANOVA P=2.6×10(-5)). Orthogonal projections to latent structures modeling identified a subset of 12 lipids that classified the 2 treatment groups after 6 weeks (R(2)Y=0.65; Q(2)=0.61; cross-validated ANOVA P=5.4×10(-8)). Decreases in the lipid species phosphatidylcholine (15:0/18:2) and hexosyl-ceramide (d18:1/24:0) were the strongest discriminators of low-density lipoprotein cholesterol reductions for both treatment groups (q<0.00005), whereas phosphatidylethanolamine (36:3e) contributed most to distinguishing treatment groups (q=0.017). Shifts in lipid composition were similar for high-dose simvastatin and simvastatin/ezetimibe combination therapy, but the magnitude of the reduction was linked to simvastatin dosage. Simvastatin therapy did not affect circulating levels of lipid mediators, suggesting that pleiotropic effects are not associated with eicosanoid production. Only high-dose simvastatin reduced the relative proportion of sphingomyelin and ceramide to phosphatidylcholine (q=0.008), suggesting a pleiotropic effect previously associated with a reduced risk of cardiovascular disease.
  •  
34.
  • Tang, Xiao, et al. (författare)
  • Activation of succinate receptor 1 boosts human mast cell reactivity and allergic bronchoconstriction
  • 2022
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 77:9, s. 2677-2687
  • Tidskriftsartikel (refereegranskat)abstract
    • Background SUCNR1 is a sensor of extracellular succinate, a Krebs cycle intermediate generated in excess during oxidative stress and has been linked to metabolic regulation and inflammation. While mast cells express SUCNR1, its role in mast cell reactivity and allergic conditions such as asthma remains to be elucidated. Methods Cord blood-derived mast cells and human mast cell line LAD-2 challenged by SUCNR1 ligands were analyzed for the activation and mediator release. Effects on mast cell-dependent bronchoconstriction were assessed in guinea pig trachea and isolated human small bronchi challenged with antigen and anti-IgE, respectively. Results SUCNR1 is abundantly expressed on human mast cells. Challenge with succinate, or the synthetic non-metabolite agonist cis-epoxysuccinate, renders mast cells hypersensitive to IgE-dependent activation, resulting in augmented degranulation and histamine release, de novo biosynthesis of eicosanoids and cytokine secretion. The succinate-potentiated mast cell reactivity was attenuated by SUCNR1 knockdown and selective SUCNR1 antagonists and could be tuned by pharmacologically targeting protein kinase C and extracellular signal-regulated kinase. Both succinate and cis-epoxysuccinate dose-dependently potentiated antigen-induced contraction in a mast cell-dependent guinea pig airway model, associated with increased generation of cysteinyl-leukotrienes and histamine in trachea. Similarly, cis-epoxysuccinate aggravated IgE-receptor-induced contraction of human bronchi, which was blocked by SUCNR1 antagonism. Conclusion SUCNR1 amplifies IgE-receptor-induced mast cell activation and allergic bronchoconstriction, suggesting a role for this pathway in aggravation of allergic asthma, thus linking metabolic perturbations to mast cell-dependent inflammation.
  •  
35.
  • Wheelock, Craig E., et al. (författare)
  • Bioinformatics strategies for the analysis of lipids
  • 2009
  • Ingår i: Methods in Molecular Biology. - Totowa, NJ : Springer. - 1064-3745 .- 1940-6029. ; 580, s. 339-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to their importance in cellular physiology and pathology as well as to recent technological advances, the study of lipids has reemerged as a major research target. However, the structural diversity of lipids presents a number of analytical and informatics challenges. The field of lipidomics is a new postgenome discipline that aims to develop comprehensive methods for lipid analysis, necessitating concomitant developments in bioinformatics. The evolving research paradigm requires that new bioinformatics approaches accommodate genomic as well as high-level perspectives, integrating genome, protein, chemical and network information. The incorporation of lipidomics information into these data structures will provide mechanistic understanding of lipid functions and interactions in the context of cellular and organismal physiology. Accordingly, it is vital that specific bioinformatics methods be developed to analyze the wealth of lipid data being acquired. Herein, we present an overview of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and application of its tools to the analysis of lipid data. We also describe a series of software tools and databases (KGML-ED, VANTED, MZmine, and LipidDB) that can be used for the processing of lipidomics data and biochemical pathway reconstruction, an important next step in the development of the lipidomics field.
  •  
36.
  • Zhang, Pei, et al. (författare)
  • Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective
  • 2021
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 8:10, s. 839-852
  • Forskningsöversikt (refereegranskat)abstract
    • The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-36 av 36
Typ av publikation
tidskriftsartikel (32)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Wheelock, Craig E. (36)
Checa, Antonio (10)
Kolmert, Johan (8)
Dahlen, Sven-Erik (7)
Shaw, Dominick E. (5)
Fowler, Stephen J. (5)
visa fler...
Djukanovic, Ratko (5)
Sterk, Peter J. (5)
Nilsson, Gunnar (5)
Sousa, Ana R. (4)
Caruso, Massimo (4)
Chanez, Pascal (4)
Horvath, Ildiko (4)
Krug, Norbert (4)
Montuschi, Paolo (4)
Sanak, Marek (4)
Adcock, Ian M. (4)
Orešič, Matej, 1967- (4)
Bakke, Per S. (4)
Riley, John H. (3)
Bates, Stewart (3)
Chung, Kian Fan (3)
Haeggström, Jesper Z ... (3)
Carlström, Mattias (3)
Behndig, Annelie F., ... (3)
Trygg, Johan (2)
Bansal, Aruna T. (2)
Howarth, Peter (2)
Nilsson, Peter (2)
Martin, Jonathan W. (2)
Eklund, Anders (2)
Kultima, Kim (2)
Melén, Erik (2)
Piehl, Fredrik (2)
Cazenave-Gassiot, Am ... (2)
Johansson, Åsa (2)
Hyötyläinen, Tuulia, ... (2)
Persson, A. Erik G. (2)
Pandis, Ioannis (2)
Singer, Florian (2)
Ericsson, Magnus (2)
Kermani, Nazanin Zou ... (2)
Alving, Kjell, 1959- (2)
Hamberg, Mats (2)
Weitzberg, Eddie (2)
Fleming, Louise J. (2)
Idborg, Helena (2)
Jakobsson, Per-Johan (2)
Fiehn, Oliver (2)
Grunewald, Johan (2)
visa färre...
Lärosäte
Karolinska Institutet (35)
Uppsala universitet (16)
Umeå universitet (8)
Örebro universitet (5)
Lunds universitet (5)
Kungliga Tekniska Högskolan (3)
visa fler...
Linköpings universitet (3)
Stockholms universitet (2)
Göteborgs universitet (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
Gymnastik- och idrottshögskolan (1)
RISE (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)
Naturvetenskap (9)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy