SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Widegren Ebba) "

Sökning: WFRF:(Widegren Ebba)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guath, Mona, et al. (författare)
  • Pupil dilation during negative prediction errors is related to brain choline concentration and depressive symptoms in adolescents
  • 2023
  • Ingår i: Behavioural Brain Research. - : Elsevier BV. - 0166-4328 .- 1872-7549. ; 436
  • Tidskriftsartikel (refereegranskat)abstract
    • Depressive symptoms are associated with altered pupillary responses during learning and reward prediction as well as with changes in neurometabolite levels, including brain concentrations of choline, glutamate and gamma-aminobutyric acid (GABA). However, the full link between depressive symptoms, reward-learning-related pupillary responses and neurometabolites is yet to be established as these constructs have not been assessed in the same individuals. The present pilot study, investigated these relations in a sample of 24 adolescents aged 13 years. Participants completed the Revised Child Anxiety and Depression Scale (RCADS) and underwent a reward learning task while measuring pupil dilation and a single voxel dorsal anterior cingulate cortex (dACC) MEGA-PRESS magnetic resonance spectroscopy scan assessing choline, glutamate and GABA concentrations. Pupil dilation was related to prediction errors (PE) during learning, which was captured by a prediction error-weighted pupil dilation response index (PE-PDR) for each individual. Higher PE-PDR scores, indicating larger pupil dilations to negative prediction errors, were related to lower depressive symptoms and lower dACC choline concentrations. Dorsal ACC choline was positively associated with depressive symptoms, whereas glutamate and GABA were not related to PE-PDR or depressive symptoms. The findings support notions of cholinergic involvement in depressive symptoms and cholinergic influence on reward-related pupillary response, suggesting that pupillary responses to negative prediction errors may hold promise as a biomarker of depressive states.
  •  
2.
  • Widegren, Ebba, et al. (författare)
  • The influence of anterior cingulate GABA+ and glutamate on emotion regulation and reactivity in adolescents and adults
  • 2024
  • Ingår i: Developmental Psychobiology. - : John Wiley & Sons. - 0012-1630 .- 1098-2302. ; 66:4
  • Tidskriftsartikel (refereegranskat)abstract
    • During adolescence, emotion regulation and reactivity are still developing and are in many ways qualitatively different from adulthood. However, the neurobiological processes underpinning these differences remain poorly understood, including the role of maturing neurotransmitter systems. We combined magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (dACC) and self-reported emotion regulation and reactivity in a sample of typically developed adolescents (n = 37; 13-16 years) and adults (n = 39; 30-40 years), and found that adolescents had higher levels of glutamate to total creatine (tCr) ratio in the dACC than adults. A glutamate i age group interaction indicated a differential relation between dACC glutamate levels and emotion regulation in adolescents and adults, and within-group follow-up analyses showed that higher levels of glutamate/tCr were related to worse emotion regulation skills in adolescents. We found no age-group differences in gamma-aminobutyric acid+macromolecules (GABA+) levels; however, emotion reactivity was positively related to GABA+/tCr in the adult group, but not in the adolescent group. The results demonstrate that there are developmental changes in the concentration of glutamate, but not GABA+, within the dACC from adolescence to adulthood, in accordance with previous findings indicating earlier maturation of the GABA-ergic than the glutamatergic system. Functionally, glutamate and GABA+ are positively related to emotion regulation and reactivity, respectively, in the mature brain. In the adolescent brain, however, glutamate is negatively related to emotion regulation, and GABA+ is not related to emotion reactivity. The findings are consistent with synaptic pruning of glutamatergic synapses from adolescence to adulthood and highlight the importance of brain maturational processes underlying age-related differences in emotion processing.
  •  
3.
  • Widegren, Ebba, et al. (författare)
  • The influence of anterior cingulate GABA+ and glutamate on emotion regulation and reactivity in adolescents and adults
  • 2024
  • Ingår i: Developmental Psychobiology. - : John Wiley & Sons. - 0012-1630 .- 1098-2302. ; 66:4
  • Tidskriftsartikel (refereegranskat)abstract
    • During adolescence, emotion regulation and reactivity are still developing and are in many ways qualitatively different from adulthood. However, the neurobiological processes underpinning these differences remain poorly understood, including the role of maturing neurotransmitter systems. We combined magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (dACC) and self-reported emotion regulation and reactivity in a sample of typically developed adolescents (n = 37; 13–16 years) and adults (n = 39; 30–40 years), and found that adolescents had higher levels of glutamate to total creatine (tCr) ratio in the dACC than adults. A glutamate Í age group interaction indicated a differential relation between dACC glutamate levels and emotion regulation in adolescents and adults, and within-group follow-up analyses showed that higher levels of glutamate/tCr were related to worse emotion regulation skills in adolescents. We found no age-group differences in gamma-aminobutyric acid+macromolecules (GABA+) levels; however, emotion reactivity was positively related to GABA+/tCr in the adult group, but not in the adolescent group. The results demonstrate that there are developmental changes in the concentration of glutamate, but not GABA+, within the dACC from adolescence to adulthood, in accordance with previous findings indicating earlier maturation of the GABA-ergic than the glutamatergic system. Functionally, glutamate and GABA+ are positively related to emotion regulation and reactivity, respectively, in the mature brain. In the adolescent brain, however, glutamate is negatively related to emotion regulation, and GABA+ is not related to emotion reactivity. The findings are consistent with synaptic pruning of glutamatergic synapses from adolescence to adulthood and highlight the importance of brain maturational processes underlying age-related differences in emotion processing. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy