SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wienecke Jacob) "

Sökning: WFRF:(Wienecke Jacob)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azam, Bushra, et al. (författare)
  • Spinal Cord Hemisection Facilitates Aromatic L-Amino Acid Decarboxylase Cells to Produce Serotonin in the Subchronic but Not the Chronic Phase.
  • 2015
  • Ingår i: Neural Plasticity. - : Hindawi Limited. - 2090-5904 .- 1687-5443. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce 5-HT from its precursor (5-hydroxytryptophan, 5-HTP) is dramatically increased following complete spinal cord transection. In this study, we investigated whether a partial loss of 5-HT innervation could similarly increase AADC activity. Adult rats with spinal cord hemisected at thoracic level (T11/T12) were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were similarly expressed on both injured and uninjured sides in both groups. Third, increased production of 5-HT in AADC cells following 5-HTP was seen in 5-day but not in 60-day postinjury group. These results suggest that plastic changes of the 5-HT system might happen primarily in the subchronic phase and for longer period its function could be compensated by plastic changes of other intrinsic and/or supraspinal modulation systems.
  •  
2.
  • Ren, Li Qun, et al. (författare)
  • Production of dopamine by aromatic l-amino acid decarboxylase cells after spinal cord injury
  • 2016
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 33:12, s. 1150-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
  •  
3.
  • Wienecke, Jacob, et al. (författare)
  • Spinal Cord Injury Enables Aromatic l-Amino Acid Decarboxylase Cells to Synthesize Monoamines.
  • 2014
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 34:36, s. 11984-12000
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been suggested, but not proven, that this residual 5-HT is produced by intraspinal 5-HT neurons. Here, we show by immunohistochemical techniques that cells containing the enzyme aromatic l-amino acid decarboxylase (AADC) occur not only near the central canal, as reported by others, but also in the intermediate zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors, offers a partial explanation of hyperreflexia below a chronic SCI.
  •  
4.
  • Zhang, Mengliang, et al. (författare)
  • Expression of calcium channel Ca(v)1.3 in cat spinal cord: Light and electron microscopic immunohistochemical study
  • 2008
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 507:1, s. 1109-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • In spinal neurons, plateau potentials serve to amplify neuronal input signals. To a large extent, the underlying persistent inward current is mediated by a subtype of the L-type calcium channel (Ca(v)1.3). In the present investigation, we have studied its distribution and cellular localization in the cat spinal cord by light and electron microscopic immunohistochemistry. The results show that Ca(v)1.3-like immunoreactivity is widely distributed in all segments of the spinal cord but that the distribution in the different laminae of the spinal gray matter varies, with the highest density of labeled neurons in lamina IX and the lowest in lamina II. The labeling intensity was highest in neuronal somata, but a certain length of the proximal dendrite was also labeled. Some neuronal groups exhibited a particularly dense labeling; these include the lateral motoneuronal group in the cervical and the lumbar enlargements and the phrenic nucleus in cervical, Clarke's nucleus in lower thoracic and upper lumbar, and Onuf's nucleus in upper sacral segments. At the ultrastructural level, Ca(v)1.3-immunoreactive products were found in neuronal somata and dendrites of different sizes. In the soma, they were predominantly associated with the rough endoplasmic reticulum but some also with the plasma membrane. In dendrites, they were associated with both intracellular organelles, including microtubules and microchondria, and the plasma membrane. These results indicate that significant proportions of the neurons in cat spinal cord, including projection neurons, interneurons, and motoneurons, are endowed with ion channels that subserve persistent inward currents and act to amplify synaptic input signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy