SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wieser Gabriella Stenberg) "

Sökning: WFRF:(Wieser Gabriella Stenberg)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergman, Sofia, 1991-, et al. (författare)
  • Ion bulk speeds and temperatures in the diamagnetic cavity of comet 67P from RPC-ICA measurements
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 503:2, s. 2733-2745
  • Tidskriftsartikel (refereegranskat)abstract
    • Y Comets are constantly interacting with the solar wind. When the comet activity is high enough, this leads to the creation of a magnetic field free region around the nucleus known as the diamagnetic cavity. It has been suggested that the ion-neutral drag force is balancing the magnetic pressure at the cavity boundary, but after the visit of Rosetta to comet 67P/Churyumov-Gerasimenko the coupling between ions and neutrals inside the cavity has been debated, at least for moderately active comets. In this study, we use data from the ion composition analyser to determine the bulk speeds and temperatures of the low-energy ions in the diamagnetic cavity of comet 67P. The low-energy ions are affected by the negative spacecraft potential, and we use the Spacecraft Plasma Interaction Software to model the resulting influence on the detected energy spectra. We find bulk speeds of 5-10 km s(-1) with a most probable speed of 7 km s(-1), significantly above the velocity of the neutral particles. This indicates that the collisional coupling between ions and neutrals is not strong enough to keep the ions at the same speed as the neutrals inside the cavity. The temperatures are in the range 0.7-1.6 eV, with a peak probability at 1.0 eV. We attribute the major part of the temperature to the fact that ions are born at different locations in the coma, and hence are accelerated over different distances before reaching the spacecraft.
  •  
2.
  • Bergman, Sofia, 1991- (författare)
  • Low-energy ions around comet 67P/Churyumov-Gerasimenko
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Low-energy ions play important roles in the formation of the plasma environment around a comet. Reliable ways of measuring these ions are therefore of high importance to fully understand the processes and dynamics of this environment. Unfortunately, low-energy ions are infamously difficult to detect. A spacecraft interacts with the surrounding environment, which leads to an accumulation of charge on the spacecraft surface. As a result, the surface acquires an electrostatic potential with respect to the surrounding plasma, which can be either positive or negative. Low-energy ions are then attracted to or repelled from the charged surface before being detected by the instrument on board, resulting in an energy shift and change of travel direction of the ions. The Rosetta mission studied comet 67P/Churyumov-Gerasimenko during the years 2014-2016, and provided the most detailed observations of a comet and its environment to date. The Ion Composition Analyzer of the Rosetta Plasma Consortium (RPC-ICA) measured positive ions in the cometary environment with energies down to just a few eV. The low-energy part of the data is, however, difficult to interpret due to the distortions caused by the spacecraft potential. In this thesis, the Spacecraft Plasma Interaction Software (SPIS) is used to correct the low-energy ion measurements made by RPC-ICA for the effects introduced by the spacecraft potential. The distortion of the effective field of view is modelled for different ion energies and plasma environments, and the results are used to correct the flow direction of low-energy ions around the comet. The FOV distortion can be considered insignificant when the energy of the ions (in eV) is twice the value of the spacecraft potential (in volts). The FOV distortion at lower energies is geometry dependent, and varies substantially between different pixels of the instrument. The FOV distortion is furthermore dependent on the Debye length of the surrounding plasma. The knowledge obtained from the simulations is subsequently used to study the flow direction of low-energy ions in and around the diamagnetic cavity, a region where the magnetic field is essentially zero and low-energy ions are important for the dynamics. Evidence of counter-streaming ions are found, with ions flowing both radially away from and back towards the nucleus. SPIS is also used to model the influence of the spacecraft potential on the energy spectrum of the ions, and from this the bulk speed and temperature of the low-energy ions in the diamagnetic cavity were determined to 5-10 km/s and 0.7-1.6 eV, respectively. The bulk speed is significantly above the speed of the neutral particles, indicating a weak coupling between ions and neutrals in the diamagnetic cavity.
  •  
3.
  • Bergman, Sofia, 1991- (författare)
  • The effect of spacecraft charging on low-energy ion measurements around comet 67P/Churyumov-Gerasimenko
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A spacecraft in space interacts with the surrounding environment and aqcuires an electrostatic potential. Charged particles are constantly bombarding the surface of the spacecraft, and at the same time solar EUV radiation induces photoemission, causing electrons to be emitted from the surface. The result is a transfer of charge between the environment and the spacecraft surface, and the surface charges to a positive or negative potential. The charged surface can cause interferences with scientific instruments on board. In this thesis, we investigate how spacecraft charging affects low-energy ion measurements. The Rosetta spacecraft visited comet 67P/Churyumov-Gerasimenko between the years 2014-2016. On board the spacecraft, the Ion Composition Analyzer (ICA) was measuring positive ions in the environment around the comet with the aim of investigating the interaction between cometary particles and the solar wind. Important for this interaction is ions with a low energy. Measuring these ions is, however, difficult due to the charged spacecraft surface. Rosetta was commonly charged to a negative potential, and consequently the measured positive ions were accelerated toward the surface before detection, affecting both their energy and travel direction. In this thesis, we study how the changed travel directions affected the effective field of view (FOV) of the instrument. We use the Spacecraft Plasma Interaction Software (SPIS) to simulate the spacecraft plasma interactions and the ion trajectories around the spacecraft. The results show that the FOV of ICA is severely distorted at low ion energies, but the distortion varies between different viewing directions of the instrument and is dependent on the properties of the surrounding plasma.
  •  
4.
  • Bergman, Sofia, 1991-, et al. (författare)
  • The Influence of Spacecraft Charging on Low‐Energy Ion Measurements Made by RPC‐ICA on Rosetta
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 125:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spacecraft charging is problematic for low‐energy plasma measurements. The charged particles are attracted to or repelled from the charged spacecraft, affecting both the energy and direction of travel of the particles. The Ion Composition Analyzer (RPC‐ICA) on board the Rosetta spacecraft is suffering from this effect. RPC‐ICA was measuring positive ions in the vicinity of comet 67P/Churyumov‐Gerasimenko, covering an energy range of a few eV/q to 40 keV/q. The low‐energy part of the data is, however, heavily distorted by the negatively charged spacecraft. In this study we use the Spacecraft Plasma Interaction Software to model the influence of the spacecraft potential on the ion trajectories and the corresponding distortion of the field of view (FOV) of the instrument. The results show that the measurements are not significantly distorted when the ion energy corresponds to at least twice the spacecraft potential. Below this energy the FOV is often heavily distorted, but the distortion differs between different viewing directions. Generally, ions entering the instrument close to the aperture plane are less affected than those entering with extreme elevation angles.
  •  
5.
  • Bergman, Sofia, 1991-, et al. (författare)
  • The Influence of Varying Spacecraft Potentials and Debye Lengths on In Situ Low-Energy Ion Measurements
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Low‐energy ions are difficult to measure, mainly due to spacecraft charging. The ions areattracted to or repelled from the charged surface prior to detection, which changes both the energy andtravel direction of the ions. This results in distortions of the data, and the changed travel directions distort the effective field of view (FOV) of the instrument performing the measurements. The ion composition analyzer (RPC‐ICA) was measuring positive ions down to an energy of a few eV around comet67P/Churyumov‐Gerasimenko. Low‐energy ions play important parts in processes in the cometary environment, but the FOV of RPC‐ICA has been shown to get severely distorted at low ion energies. Several factors are believed to affect the distortion level. In this study we use the Spacecraft Plasma Interaction Software (SPIS) to investigate the influence of varying spacecraft potentials and Debye lengths on the FOV distortion of RPC‐ICA. We show that the distortion level is dependent on the Debye length of the surrounding plasma, but the sensitivity varies substantially between different viewing directions of the instrument. We also show that a small nonlinearity exists in the relation between FOV distortion, ion energy, and spacecraft potential, mainly caused by the photoemission and bulk flow of the cometary plasma.
  •  
6.
  • Canu Blot, Romain, et al. (författare)
  • Upper limit of the solar wind protons backscattering efficiency from Comet 67P/Churyumov-Gerasimenko
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar wind ions backscattering is a fundamental plasma-surface interaction process that may occur on all celestial bodies exposed to the solar wind and lacking a significant atmosphere or magnetosphere. Yet, observations have been limited to the regolith-covered Moon and Phobos, one of the Martian moons.Aims. We aim to expand our knowledge of the process to include comets by investigating the backscattering of solar wind protons from the surface of comet 67P/Churyumov-Gerasimenko.Methods. We used one of the ion spectrometers on board ESA s Rosetta spacecraft to search for evidence of backscattered solar wind protons from the cometary surface. The signal of interest was expected to be very weak and several statistical treatments of the data were essential to eliminate any influence from background noise and instrumental effects. Due to limited knowledge of the signal location within the observed parameter space, we conducted a statistical analysis to identify the most probable conditions for detecting the signal.Results. No significant solar wind backscattered protons were ever observed by the instrument. The statement applies to the large spectrum of observation conditions. An upper limit of the backscattered proton flux is given, as well as an upper limit of the backscattering efficiency of 9 A 104.Conclusions. The surface of comet 67P/Churyumov-Gerasimenko distinguishes itself as a notably weak reflector of solar wind protons, with its backscattering efficiency, at most, as large as the lowest observed backscattering efficiency from the lunar regolith.
  •  
7.
  • Nilsson, Hans, et al. (författare)
  • Average cometary ion flow pattern in the vicinity of comet 67P from moment data
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 498:4, s. 5263-5272
  • Tidskriftsartikel (refereegranskat)abstract
    • Average flow patterns of ions around comet 67P detected by the RPC-ICA instrument onboard Rosetta are presented both as a time series and as a spatial distribution of the average flow in the plane perpendicular to the comet - Sun direction (Y-Z plane in the coordinate systems used). Cometary ions in the energy range up to 60 eV flow radially away from the nucleus in the Y-Z plane, irrespective of the direction of the magnetic field, throughout the mission. These ions may however be strongly affected by the spacecraft potential, the uncertainty due to this is briefly discussed. Inside the solar wind ion cavity and in the periods just before and after, the cometary pick up ions moving antisunward are deflected against the inferred solar wind electric field direction. This is opposite to what is observed for lower levels of mass-loading. These pick up ions are behaving in a similar way to the solar wind ions and are deflected due to mass-loading. A spatial asymmetry can be seen in the observations of deflected pick up ions, with motion against the electric field primarily within a radius of 200 km of the nucleus and also in the negative electric field hemisphere. Cometary ions observed by RPC-ICA typically move in the antisunward direction throughout the mission. These are average patterns, full-resolution data show very much variability.
  •  
8.
  • Nilsson, Hans, et al. (författare)
  • Birth of a comet magnetosphere : A spring of water ions
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (~3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (
  •  
9.
  • Nilsson, Hans, et al. (författare)
  • Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 469:Suppl_2, s. S252-S261
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosetta has followed comet 67P from low activity at more than 3.6 au heliocentric distance to high activity at perihelion (1.24 au) and then out again. We provide a general overview of the evolution of the dynamic ion environment using data from the RPC-ICA ion spectrometer. We discuss where Rosetta was located within the evolving comet magnetosphere. For the initial observations, the solar wind permeated all of the coma. In 2015 mid-April, the solar wind started to disappear from the observation region, to re-appear again in 2015 December. Low-energy cometary ions were seen at first when Rosetta was about 100 km from the nucleus at 3.6 au, and soon after consistently throughout the mission except during the excursions to farther distances from the comet. The observed flux of low-energy ions was relatively constant due to Rosetta's orbit changing with comet activity. Accelerated cometary ions, moving mainly in the antisunward direction gradually became more common as comet activity increased. These accelerated cometary ions kept being observed also after the solar wind disappeared from the location of Rosetta, with somewhat higher fluxes further away from the nucleus. Around perihelion, when Rosetta was relatively deep within the comet magnetosphere, the fluxes of accelerated cometary ions decreased, as did their maximum energy. The disappearance of more energetic cometary ions at close distance during high activity is suggested to be due to a flow pattern where these ions flow around the obstacle of the denser coma or due to charge exchange losses.
  •  
10.
  • Nilsson, Hans, et al. (författare)
  • Solar cycle variation of ion escape from Mars
  • 2023
  • Ingår i: Icarus. - : Academic Press. - 0019-1035 .- 1090-2643. ; 393
  • Tidskriftsartikel (refereegranskat)abstract
    • Using Mars Express data from 2007 until 2020 we show how ion outflow from Mars varied over more than a solar cycle, from one solar minimum to another. The data was divided into intervals with a length of one Martian year, starting from 30 April 2007 and ending 13 July 2020. The net escape rate was about 5×1024s−1 in the first covered minimum, and 2−3×1024s−1 in the most recent minimum. Ion escape peaked at 1×1025s−1 during the intervening solar maximum. The outflow is a clear function of the solar cycle, in agreement with previous studies which found a clear relationship between solar EUV flux and ion escape at Mars. The outflow during solar maximum is 2.5 to 3 times higher than in the surrounding solar minima. The average solar wind dynamic pressure over a Martian year was investigated, but does not vary much with the solar cycle. The escape rate at solar maximum is in good agreement with some recent MAVEN studies, and dominated by low energy ions at most sampled locations. A simple linear fit to the data gives a prediction of the escape rate for the much stronger solar maximum during the Phobos mission in 1989 that is consistent with observations. The fit also implies a non-linear response of ion escape for low solar EUV, with a lower initial escape response for lower solar EUV levels than those of the studied data set.
  •  
11.
  • Odelstad, Elias, et al. (författare)
  • Measurements of the electrostatic potential of Rosetta at comet 67P
  • 2016
  • Ingår i: Proceedings of the 14th Spacecraft Charging Technology Conference. - Noordwijk, The Netherlands : ESA Publications Division, European Space Agency. ; , s. Abstract 123-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We present and compare measurements of the spacecraft potential (Vs/c) of ESA:s Rosetta spacecraft, currently in orbit around comet 67P/Churyumov-Gerasimenko, by the Langmuir probe (RPC-LAP) and Ion Composition Analyzer (RPC-ICA) instruments. Vs/c has mainly been negative, driven so by the high (∼5 eV) temperature of the coma photoelectrons. LAP only picks up a portion of the full Vs/c since the two probes, mounted on booms of 2.2 and 1.6 m length, respectively, are generally in- side the potential field of the spacecraft. Comparison to the minimum energy of collected positive ions by ICA shows that this portion varies between 0.7 and 0.9Vs/c, with generally good correspondence between the two in- struments except when local ion production is weak and accelerated ions dominate the flux. 
  •  
12.
  • Odelstad, Elias, et al. (författare)
  • Measurements of the electrostatic potential of Rosetta at comet 67P
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:Suppl. 2, s. S568-S581
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and compare measurements of the spacecraft potential (Vs/c) of the Rosetta spacecraft throughout its stay in the inner coma of comet 67P/Churyumov-Gerasimenko, by the Rosetta Plasma Consortium-LAngmuir Probe (RPC-LAP) and Ion Composition Analyzer (RPC-ICA) instruments. Vs/c has mainly been negative, driven by the high temperature (~5-10 eV) of the coma photoelectrons. The magnitude of the negative Vs/c traces heliocentric, cometocentric, seasonal and diurnal variations in cometary outgassing, consistent with production at or inside the cometocentric distance of the spacecraft being the dominant source of the observed plasma. LAP only picks up a portion of the full Vs/c since the two probes, mounted on booms of 2.2 and 1.6 m length, respectively, are generally inside the potential field of the spacecraft. Comparing with the minimum energy of positive ions collected by ICA, we find numerous cases with strong correlation between the two instruments, from which the fraction of Vs/c picked up by LAP is found to vary between about 0.7 and 1. We also find an ICA energy offset of 13.7 eV (95 per cent CI: [12.5, 15.0]). Many cases of poor correlation between the instruments are also observed, predominantly when local ion production is weak and accelerated ions dominate the flux, or during quiet periods with low dynamic range in Vs/c and consequently low signal-to-noise ratios.
  •  
13.
  • Wieser, Gabriella Stenberg, et al. (författare)
  • Investigating short-time-scale variations in cometary ions around comet 67P
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 469, s. S522-S534
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly varying plasma environment around comet 67P/Churyumov-Gerasimenko inspired an upgrade of the ion mass spectrometer (Rosetta Plasma Consortium Ion Composition Analyzer) with new operation modes, to enable high time resolution measurements of cometary ions. Two modes were implemented, one having a 4 s time resolution in the energy range 0.3-82 eV/q and the other featuring a 1 s time resolution in the energy range 13-50 eV/q. Comparing measurements made with the two modes, it was concluded that 4 s time resolution is enough to capture most of the fast changes of the cometary ion environment. The 1462 h of observations done with the 4 s mode were divided into hour-long sequences. It is possible to sort 84 per cent of these sequences into one of five categories, depending on their appearance in an energy-time spectrogram. The ion environment is generally highly dynamic, and variations in ion fluxes and energies are seen on time-scales of 10 s to several minutes.
  •  
14.
  • Behar, Etienne, et al. (författare)
  • Mass loading at 67P/Churyumov-Gerasimenko : A case study
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:4, s. 1411-1418
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the dynamics of the interaction between the solar wind ions and a partially ionized atmosphere around a comet, at a distance of 2.88 AU from the Sun during a period of low nucleus activity. Comparing particle data and magnetic field data for a case study, we highlight the prime role of the solar wind electric field in the cometary ion dynamics. Cometary ion and solar wind proton flow directions evolve in a correlated manner, as expected from the theory of mass loading. We find that the main component of the accelerated cometary ion flow direction is along the antisunward direction and not along the convective electric field direction. This is interpreted as the effect of an antisunward polarization electric field adding up to the solar wind convective electric field.
  •  
15.
  • Behar, Etienne, et al. (författare)
  • Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko : Observations and modelling
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft.Aims. Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind.Methods. We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere.Results. The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind.Conclusions. The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind. 
  •  
16.
  • Gunell, Herbert, et al. (författare)
  • Ion acoustic waves near a comet nucleus : Rosetta observations at comet 67P/Churyumov-Gerasimenko
  • 2021
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 39:1, s. 53-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion acoustic waves were observed between 15 and 30 km from the centre of comet 67P/Churyumov-Gerasimenko by the Rosetta spacecraft during its close flyby on 28 March 2015. There are two electron populations: one cold at k(B)T(e) approximate to 0.2 eV and one warm at k(B)T(e) approximate to 2 eV. The ions are dominated by a cold (a few hundredths of electronvolt) distribution of water group ions with a bulk speed of (3-3.7) km s(-1). A warm k(B)T(e) approximate to 6 eV ion population, which also is present, has no influence on the ion acoustic waves due to its low density of only 0.25 % of the plasma density. Near closest approach the propagation direction was within 50 degrees from the direction of the bulk velocity. The waves, which in the plasma frame appear below the ion plasma frequency f(pi) approximate to 2 kHz, are Doppler-shifted to the spacecraft frame where they cover a frequency range up to approximately 4 kHz. The waves are detected in a region of space where the magnetic field is piled up and draped around the inner part of the ionised coma. Estimates of the current associated with the magnetic field gradient as observed by Rosetta are used as input to calculations of dispersion relations for current-driven ion acoustic waves, using kinetic theory. Agreement between theory and observations is obtained for electron and ion distributions with the properties described above. The wave power decreases over cometocentric distances from 24 to 30 km. The main difference between the plasma at closest approach and in the region where the waves are decaying is the absence of a significant current in the latter. Wave observations and theory combined supplement the particle measurements that are difficult at low energies and complicated by spacecraft charging.
  •  
17.
  • Gunell, Herbert, et al. (författare)
  • Why an intrinsic magnetic field does not protect a planet against atmospheric escape
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence or absence of a magnetic field determines the nature of how a planet interacts with the solar wind and what paths are available for atmospheric escape. Magnetospheres form both around magnetised planets, such as Earth, and unmagnetised planets, like Mars and Venus, but it has been suggested that magnetised planets are better protected against atmospheric loss. However, the observed mass escape rates from these three planets are similar (in the approximate (0.5–2) kg s−1 range), putting this latter hypothesis into question. Modelling the effects of a planetary magnetic field on the major atmospheric escape processes, we show that the escape rate can be higher for magnetised planets over a wide range of magnetisations due to escape of ions through the polar caps and cusps. Therefore, contrary to what has previously been believed, magnetisation is not a sufficient condition for protecting a planet from atmospheric loss. Estimates of the atmospheric escape rates from exoplanets must therefore address all escape processes and their dependence on the planet’s magnetisation.
  •  
18.
  • Johansson, Fredrik Leffe, 1988-, et al. (författare)
  • Plasma densitites, flow and Solar EUV flux at comet 67P : A cross-calibration approach
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746.
  • Tidskriftsartikel (refereegranskat)abstract
    • Context.During its two year mission at comet 67P, Rosetta nearly continuously monitored the inner coma plasma environment forgas production rates varying over three orders of magnitude, at distances to the nucleus from a few to a few hundred km. To achievethe best possible measurements, cross-calibration of the plasma instruments is needed.Aims.To provide a consistent plasma density data set for the full mission, in the process providing a statistical characterisation of theplasma processes in the inner coma and their evolution.Methods.We construct physical models for two different methods to cross-calibrate the spacecraft potential and the ion current asmeasured by the Rosetta Langmuir Probes (LAP) to the electron density as measured by the Mutual Impedance Probe (MIP). We alsodescribe the methods used to estimate spacecraft potential, and validate the results with the Ion Composition Analyser, (ICA).Results.We retrieve a continuous plasma density dataset for the entire cometary mission with a much improved dynamical rangecompared to any plasma instrument alone and, at times, improve the temporal resolution from 0.24-0.74 Hz to 57.8 Hz. The physicalmodel also yields, at 3 hour time resolution, ion flow speeds as well as a proxy for the solar EUV flux from the photoemission fromthe Langmuir Probes.Conclusions.We report on two independent estimates of the ion flow speed which are consistent with the bulk H2O+ion velocitiesas measured by ICA. We find the ion flow to be much faster than the neutral gas, lending further evidence that the ions are mostlycollisionally decoupled from the neutrals in the coma. Also, the measured EUV flux is perfectly consistent with independent measurements previously published in Johansson et al. (2017) and lends support for the conclusions drawn therein regarding an attenuationof solar EUV from a distant nanograin dust population between the comet and the Sun, when the comet activity was high. The newdensity dataset is consistent with the existing MIP density dataset, but facilitates plasma analysis at much shorter timescales, with anincreased temporal resolution of a factor of (up to) 240 and covers also long time periods where densities were too low to be measuredby MIP.
  •  
19.
  • Nilsson, Hans, et al. (författare)
  • Upstream solar wind speed at comet 67P : reconstruction method, model comparison, and results
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Rosetta followed comet 67P at heliocentric distances from 1.25 to 3.6 au. The solar wind was observed for much of this time, but was significantly deflected and to some extent slowed down by the interaction with the coma.Aims: We use the different changes in the speed of H+ and He2+ when they interact with the coma to estimate the upstream speed of the solar wind. The different changes in the speed are due to the different mass per charge of the particles, while the electric force per charge due to the interaction is the same. A major assumption is that the speeds of H+ and He2+ were the same in the upstream region. This is investigated.Methods: We derived a method for reconstructing the upstream solar wind from H+ and He2+ observations. The method is based on the assumption that the interaction of the comet with the solar wind can be described by an electric potential that is the same for both H+ and He2+. This is compared to estimates from the Tao model and to OMNI and Mars Express data that we propagated to the observation point.Results: The reconstruction agrees well with the Tao model for most of the observations, in particular for the statistical distribution of the solar wind speed. The electrostatic potential relative to the upstream solar wind is derived and shows values from a few dozen volts at large heliocentric distances to about 1 kV during solar events and close to perihelion. The reconstructed values of the solar wind for periods of high electrostatic potential also agree well with propagated observations and model results.Conclusions: The reconstructed upstream solar wind speed during the Rosetta mission agrees well with the Tao model. The Tao model captures some slowing down of high-speed streams as compared to observations at Earth or Mars. At low solar wind speeds, below 400 km s-1, the agreement is better between our reconstruction and Mars observations than with the Tao model. The magnitude of the reconstructed electrostatic potential is a good measure of the slowing-down of the solar wind at the observation point.
  •  
20.
  • Odelstad, Elias, et al. (författare)
  • Ion-Ion Cross-Field Instability of Lower Hybrid Waves in the Inner Coma of Comet 67P
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that an ion-ion cross-field streaming instability between cold newborn cometary ions and heated heavy ions that were picked up upstream is likely a contributing source of observed lower hybrid (LH) waves in the inner coma of comet 67P/Churyumov-Gerasimenko. Electric field oscillations in the LH frequency range are common here, and have previously been attributed mainly to the lower-hybrid drift instability, driven by gradients associated with observed local density fluctuations. However, the observed wave activity is not confined to such gradients, nor is it always strongest there. Thus, other instabilities are likely needed as well to explain the observed wave activity. Several previous works have shown the existence of multiple populations of cometary ions in the inner coma of 67P, distinguished by differences in mass, energy and/or flow direction. We here examine two selected time intervals in October and November 2015, with substantial wave activity in the LH frequency range, where we identify two distinct cometary ion populations: a bulk population of locally produced, predominantly radially outflowing ions, and a more tenuous population picked up further upstream and accelerated back toward the comet by the solar wind electric field. These two populations exhibit strong relative drifts (similar to 20 km/s, or about five times the pickup ion thermal velocity), and we perform an electrostatic dispersion analysis showing that conditions should be favorable for LH wave generation through the ion-ion cross-field instability.
  •  
21.
  • Persson, Moa, 1991-, et al. (författare)
  • Heavy Ion Flows in the Upper Ionosphere of the Venusian North Pole
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:6, s. 4597-4607
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the heavy ion density and velocity in the Venusian upper ionosphere near the North Pole, using the Ion Mass Analyzer, a part of the Analyzer of Space Plasmas and Energetic Atoms 4, together with the magnetic field instruments on Venus Express. The measurements were made during June-July 2014, covering the aerobraking campaign with lowered altitude measurements (similar to 130 km). The plasma scale heights are similar to 15 km below 150-km altitude and similar to 200 km at 150-400-km altitude. A clear trend of dusk-to-dawn heavy ion flow across the polar ionosphere was found, with speeds of similar to 2-10 km/s. In addition, the flow has a significant downward radial velocity component. The flow pattern does not depend on the interplanetary magnetic field directions nor the ionospheric magnetization states. Instead, we suggest a thermal pressure gradient between the equatorial and polar terminator regions, induced by the decrease in density between the regions, as the dominant mechanism driving the ion flow. Plain Language Summary We have calculated the ion density and velocities in the Venusian polar ionosphere using measurements from the Ion Mass Analyzer on board the Venus Express spacecraft. During June-July 2014 the periapsis was lowered to similar to 130 km, which allowed for measurements down to low altitudes of the ionosphere near the North Pole. The plasma scale heights are similar to 15 km below 150-km altitude and similar to 200 km at 150-400 km, which is similar to what was found near the equatorial region by the Pioneer Venus mission. In addition, there is a clear trend of dusk-to-dawn flow, along the terminator, for the heavy ions. This is surprising, as a general flow from day-to-night is expected for the Venusian ionosphere due to the long nights and significant heating of the dayside upper atmosphere. The interplanetary magnetic field direction does not appear to affect the ion flow pattern. Instead, we propose a thermal pressure gradient as the dominant accelerating mechanism, induced by the decrease in density from the equator toward the pole.
  •  
22.
  • Simon Wedlund, Cyril, et al. (författare)
  • Hybrid modelling of cometary plasma environments : I. Impact of photoionisation, charge-exchange and electron ionisation on bow shock and cometopause at 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 604
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ESA/Rosetta mission made it possible to monitor the plasma environment of a comet, from near aphelion to perihelion conditions. To understand the complex dynamics and plasma structures found at the comet, a modelling effort must be carried out in parallel. Aims. Firstly, we present a 3D hybrid model of the cometary plasma environment including photoionisation, solar wind charge exchange, and electron ionisation reactions; this model is used in stationary and dynamic conditions (mimicking the solar wind variations), and is thus especially adapted to a weakly outgassing comet such as 67P/Churyumov-Gerasimenko, the target of the ESA/Rosetta mission. Secondly, we use the model to study the respective effects of ionisation processes on the formation of the dayside macroscopic magnetic and density boundaries upstream of comet 67P in perihelion conditions at 1.3 AU. Thirdly, we explore and discuss the effects of these processes on the magnetic field line draping, ionisation rates, and composition in the context of the Rosetta mission. Methods. We used a new quasi-neutral hybrid model, originally designed for weakly magnetised planetary bodies, such as Venus, Mars, and Titan, and adapted here to comets. Ionisation processes were monitored individually and together following a probabilistic interaction scheme. Three-dimensional paraboloid fits of the bow shock surface, identified for a magnetosonic Mach number equal to 2, and of the cometopause surface, were performed for a more quantitative analysis. Results. We show that charge exchange and electron ionisation play a major role in the formation of a bow shock-like structure far upstream, while photoionisation is the main driver at and below the cometopause boundary, within 1000 km cometocentric distance. Charge exchange contributes to 42% of the total production rate in the simulation box, whereas production rates from electron ionisation and photoionisation reach 33% and 25%, respectively. We also discuss implications for Rosetta's observations, regarding the detection of the bow shock and the cometopause.
  •  
23.
  • Volwerk, Martin, et al. (författare)
  • Dynamic field line draping at comet 67P/Churyumov-Gerasimenko during the Rosetta dayside excursion
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Rosetta dayside excursion took place in September-October 2015 when comet 67P/Churyumov-Gerasimenko (67P/CG) was located at similar to 1.36 AU from the Sun after it had passed perihelion on 13 August 2015 at similar to 1.25 AU. At this time, the comet was near its most active period, and its interaction with the solar wind was expected to be at its most intense, with ion pickup and magnetic field line draping. The dayside excursion was planned to move through different regions that were expected upstream of the cometary nucleus, and to possibly detect the location of the bow shock.Aims: The goal of this study is to describe the dynamic field line draping that takes place around the comet and the plasma processes that are connected to this.Methods: The data from the full Rosetta Plasma Consortium (RPC) were used to investigate the interaction of solar wind and comet, starting from boxcar-averaged magnetic field data in order to suppress high-frequency noise in the data. Through calculating the cone and clock angle of the magnetic field, we determined the draping pattern of the magnetic field around the nucleus of the comet. Then we studied the particle data in relation to the variations that are observed in the magnetic field.Results: During the dayside excursion, the magnetic field cone angle changed several times, which means that the magnetic field direction changes from pointing sunward to anti-sunward. This is caused by the changing directions of the interplanetary magnetic field that is transported toward the comet. The cone-angle direction shows that mass-loading of the interplanetary magnetic field of the solar wind leads to dynamic draping. The ion velocity and the magnetic field strength are correlated because the unmagnetized ions are accelerated more (less) strongly by the increasing (decreasing) magnetic field strength. There is an indication of an anticorrelation between the electron density and the magnetic field strength, which might be caused by the magnetized electrons being mirrored out of the strong field regions. The Rosetta RPC has shown that (dynamic) draping also occurs as mildly active comets, as was found at highly active comets such as 1P/Halley and 21P/Giacobini-Zinner, but also that determining both dynamic and nested draping will require a combination of fast flybys and slow excursions for future missions.
  •  
24.
  • Wedlund, Cyril Simon, et al. (författare)
  • The atmosphere of comet 67P/Churyumov-Gerasimenko diagnosed by charge-exchanged solar wind alpha particles
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ESA/Rosetta mission has been orbiting comet 67P/Churyumov-Gerasimenko since August 2014, measuring its dayside plasma environment. The ion spectrometer onboard Rosetta has detected two ion populations, one energetic with a solar wind origin (H+, He2+, He+), the other at lower energies with a cometary origin (water group ions such as H2O+). He+ ions arise mainly from charge-exchange between solar wind alpha particles and cometary neutrals such as H2O. Aims. The He+ and He2+ ion fluxes measured by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA) give insight into the composition of the dayside neutral coma, into the importance of charge-exchange processes between the solar wind and cometary neutrals, and into the way these evolve when the comet draws closer to the Sun. Methods. We combine observations by the ion spectrometer RPC-ICA onboard Rosetta with calculations from an analytical model based on a collisionless neutral Haser atmosphere and nearly undisturbed solar wind conditions. Results. Equivalent neutral outgassing rates Q can be derived using the observed RPC-ICA He+/He2+ particle flux ratios as input into the analytical model in inverse mode. A revised dependence of Q on heliocentric distance Rh in AU is found to be Rh -7.06Rh-7.06 between 1.8 and 3.3 AU, suggesting that the activity in 2015 differed from that of the 2008 perihelion passage. Conversely, using an outgassing rate determined from optical remote sensing measurements from Earth, the forward analytical model results are in relatively good agreement with the measured RPC-ICA flux ratios. Modelled ratios in a 2D spherically-symmetric plane are also presented, showing that charge exchange is most efficient with solar wind protons. Detailed cometocentric profiles of these ratios are also presented. Conclusions. In conclusion, we show that, with the help of a simple analytical model of charge-exchange processes, a mass-capable ion spectrometer such as RPC-ICA can be used as a "remote-sensing" instrument for the neutral cometary atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (1)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Nilsson, Hans (18)
Stenberg-Wieser, Gab ... (13)
Wieser, Martin (12)
Wieser, Gabriella St ... (10)
Eriksson, Anders (9)
Behar, Etienne (8)
visa fler...
Gunell, Herbert (8)
Odelstad, Elias (7)
Bergman, Sofia, 1991 ... (6)
Henri, Pierre (5)
Richter, Ingo (5)
Johansson, Fredrik (4)
Barabash, Stas (3)
Holmström, Mats (3)
Alho, Markku (3)
Wedlund, Cyril Simon (3)
Kallio, Esa (3)
Karlsson, Tomas, 196 ... (3)
Vigren, Erik (3)
Nemeth, Zoltan (3)
Lindkvist, Jesper, 1 ... (3)
Bergman, Sofia (3)
Hamrin, Maria, 1972- (3)
Eriksson, Anders. I. (2)
Edberg, Niklas J. T. (2)
Yamauchi, Masatoshi (2)
Johansson, Fredrik L ... (2)
Williamson, Hayley (2)
Fedorov, Andrei (2)
Slapak, Rikard (1)
Brodin, Gert, 1963- (1)
André, Mats (1)
Johansson, Fredrik L ... (1)
Burch, James L. (1)
Galand, Marina (1)
Lundin, Rickard (1)
Persson, Moa, 1991- (1)
Zhang, T. L. (1)
Brolles, T.W. (1)
Ramstad, Robin (1)
Götz, Charlotte (1)
Beth, Arnaud (1)
Behar, E. (1)
Stenberg Wieser, Gab ... (1)
Wieser, Martin, Dr. (1)
Brodin, Gert, Prof. ... (1)
Håland, Stein, Prof. (1)
Mokashi, Prachet (1)
Canu Blot, Romain (1)
Edberg, Niklas (1)
visa färre...
Lärosäte
Umeå universitet (15)
Uppsala universitet (13)
Kungliga Tekniska Högskolan (7)
Luleå tekniska universitet (5)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy