SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Windhorst Rogier) "

Sökning: WFRF:(Windhorst Rogier)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashcraft, Teresa A., et al. (författare)
  • Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field : Depth Versus Resolution
  • 2018
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 130:988
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hr of data (315 images with 5-6 minutes exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM less than or similar to 0 ''.8), which constitute similar to 10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM less than or similar to 1 ''.8 (similar to 94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are similar to 90% complete to U-AB less than or similar to 26 mag. Fainter than U-AB similar to 27 mag, the object counts from the optimal-resolution image start to drop-off dramatically (90% between U-AB = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity (mu(AB)(U) less than or similar to 32 mag arcsec(-2)) show a more gradual drop (10% between U-AB similar or equal to 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. We conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. Finally, we find-for 220 brighter galaxies with U-AB less than or similar to 23 mag-only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to mu(AB)(U) less than or similar to 32 mag arcsec(-2). In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light.
  •  
2.
  • Diego, Jose M., et al. (författare)
  • JWST's PEARLS : Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of Mothra, an extremely magnified monster star, likely a binary system of two supergiant stars, in one of the strongly lensed galaxies behind the galaxy cluster MACS J0416.1-2403. Mothra is in a galaxy with spectroscopic redshift z = 2.091 in a portion of the galaxy that is parsecs away from the cluster caustic. The binary star is observed only on the side of the critical curve with negative parity but has been detectable for at least eight years, implying the presence of a small lensing perturber. Microlenses alone cannot explain the earlier observations of this object made with the Hubble Space Telescope. A larger perturber with a mass of at least 10(4 )M(circle dot) offers a more satisfactory explanation. Based on the lack of perturbation on other nearby sources in the same arc, the maximum mass of the perturber is 2.5 x 10(6) M-circle dot, making this the smallest substructure constrained by lensing at z > 0.3. The existence of this millilens is fully consistent with expectations from standard cold dark matter cosmology. On the other hand, the existence of such a small substructure in a cluster environment has implications for other dark matter models. In particular, warm dark matter models with particle masses below 8.7 keV are excluded by our observations. Similarly, axion dark matter models are consistent with the observations only if the axion mass is in the range 0.5 x 10(-22) eV < m(a )< 5 x 10(-22) eV.
  •  
3.
  • Ferreras, Ignacio, et al. (författare)
  • FIGS : spectral fitting constraints on the star formation history of massive galaxies since the cosmic noon
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:1, s. 1358-1376
  • Tidskriftsartikel (refereegranskat)abstract
    • We constrain the stellar population properties of a sample of 52 massive galaxies - with stellar mass log (M-s/M-circle dot) greater than or similar to 10.5 - over the redshift range 0.5 < z < 2 by use of observer-frame optical and near-infrared slitless spectra from Hubble Space Telescope's ACS and WFC3 grisms. The deep exposures (similar to 100 ks) allow us to target individual spectra of massive galaxies to F160W = 22.5AB. Our spectral fitting approach uses a set of six base models adapted to the redshift and spectral resolution of each observation, and fits the weights of the base models, including potential dust attenuation, via a Markov Chain Monte Carlo method. Our sample comprises a mixed distribution of quiescent (19) and star-forming galaxies (33). We quantify the width of the age distribution (Delta t) that is found to dominate the variance of the retrieved parameters according to principal component analysis. The population parameters follow the expected trend towards older ages with increasing mass, and Delta t appears to weakly anticorrelate with stellar mass, suggesting a more efficient star formation at the massive end. As expected, the redshift dependence of the relative stellar age (measured in units of the age of the Universe at the source) in the quiescent sample rejects the hypothesis of a single burst (aka monolithic collapse). Radial colour gradients within each galaxy are also explored, finding a wider scatter in the star-forming subsample, but no conclusive trend with respect to the population parameters.
  •  
4.
  • Fudamoto, Yoshinobu, et al. (författare)
  • The Extended [C II] under Construction? : Observation of the Brightest High-z Lensed Star-forming Galaxy at z=6.2
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of [C ii] 158 μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ ∼ 20) star-forming galaxy, MACS0308-zD1 at z = 6.2078 ± 0.0002. The [C ii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [C ii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [C ii] is seen with an FWHM of 230 ± 50 km s−1. The broader [C ii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [C ii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [C ii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection of λ158μm dust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L⊙. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.
  •  
5.
  • Hsiao, Tiger Yu-Yang, et al. (författare)
  • JWST Reveals a Possible z similar to 11 Galaxy Merger in Triply Lensed MACS0647-JD
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:2
  • Tidskriftsartikel (refereegranskat)abstract
    • MACS0647-JD is a triply lensed z similar to 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of similar to 8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 mu m. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component "A" is intrinsically very blue (ss similar to-2.6 +/- 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius similar to 70 +/- 24 pc. The smaller component "B" (r similar to 20-+ 58 pc) appears redder (ss similar to-2 +/- 0.2), likely because it is older (100-200 Myr) with mild dust extinction (AV similar to 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation similar to 400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy "C" similar to 3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.
  •  
6.
  • Kuschel, Maxwell, et al. (författare)
  • Investigating the Dominant Environmental Quenching Process in UVCANDELS/COSMOS Groups
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 947:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore how the fraction of quenched galaxies changes in groups of galaxies with respect to the distance to the center of the group, redshift, and stellar mass to determine the dominant process of environmental quenching in 0.2 < z < 0.8 groups. We use new UV data from the UVCANDELS project in addition to existing multiband photometry to derive new galaxy physical properties of the group galaxies from the zCOSMOS 20 k group catalog. Limiting our analysis to a complete sample of log (M*/M⊙) > 10.56 group galaxies, we find that the probability of being quenched increases slowly with decreasing redshift, diverging from the stagnant field galaxy population. A corresponding analysis on how the probability of being quenched increases with time within groups suggests that the dominant environmental quenching process is characterized by slow (∼Gyr) timescales. We find a quenching time of approximately  Gyr, consistent with the slow processes of strangulation and delayed-then-rapid quenching although more data are needed to confirm this result.
  •  
7.
  • Larson, Rebecca L., et al. (författare)
  • Discovery of a z=7.452 High Equivalent Width Ly alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 858:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of an unbiased search for Ly alpha emission from continuum-selected 5.6 < z < 8.7 galaxies. Our data set consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope (HST)/WFC3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Ly alpha emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium during the epoch of reionization. These data have sufficient depth to detect Ly alpha emission in this epoch, as Tilvi et al. have published the FIGS detection of previously known Ly alpha emission at z = 7.51. The FIGS data use five separate roll angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies and also removes any dispersed continuum light from each individual spectrum. We searched for significant (>4 sigma) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically selected high-redshift candidates between 5.6 < z < 8.7, we find two emission lines, one previously published by Tilvi et al., (2016) and a new line at 1.028 mu m, which we identify as Ly alpha at z = 7.452 +/- 0.003. This newly spectroscopically confirmed galaxy has the highest Ly alpha rest-frame equivalent width (EWLy alpha) yet published at z > 7 (140.3 +/- 19.0 ångström).
  •  
8.
  • Martin, Alec, et al. (författare)
  • UV-bright Star-forming Clumps and Their Host Galaxies in UVCANDELS at 0.5 ≤ z ≤ 1
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 955:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant star-forming clumps are a prominent feature of star-forming galaxies (SFGs) and contain important clues on galaxy formation and evolution. However, the basic demographics of clumps and their host galaxies remain uncertain. Using the Hubble Space Telescope/Wide Field Camera 3 F275W images from the Ultraviolet Imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we detect and analyze giant star-forming clumps in galaxies at 0.5 ≤ z ≤ 1, connecting two epochs when clumps are common (at cosmic high noon, z ∼ 2) and rare (in the local Universe). We construct a clump sample whose rest-frame 1600 Å luminosity is 3 times higher than the most luminous local H ii regions (MUV ≤ −16 AB). In our sample, 35% ± 3% of low-mass galaxies (log[M∗/M⊙] < 10) are clumpy (i.e., containing at least one off-center clump). This fraction changes to 22% ± 3% and 22% ± 4% for intermediate (10 ≤ log[M∗/M⊙] ≤ 10.5) and high-mass (log[M∗/M⊙] > 10.5) galaxies, in agreement with previous studies. When compared to similar-mass nonclumpy SFGs, low- and intermediate-mass clumpy SFGs tend to have higher star formation rates (SFRs) and bluer rest-frame U − V colors, while high-mass clumpy SFGs tend to be larger than nonclumpy SFGs. However, clumpy and nonclumpy SFGs have similar Sérsic index, indicating a similar underlying density profile. Furthermore, we investigate how the UV luminosity of star-forming regions correlates with the physical properties of host galaxies. On average, more luminous star-forming regions reside in more luminous, smaller, and/or higher specific SFR galaxies and are found closer to their hosts' galactic centers.
  •  
9.
  • Meena, Ashish Kumar, et al. (författare)
  • Two Lensed Star Candidates at z similar or equal to 4.8 behind the Galaxy Cluster MACS J0647.7+7015
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 944:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known, z (phot) similar or equal to 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least greater than or similar to 90 and greater than or similar to 50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of similar to[10(3)-10(5)] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of similar to 10,000 K, and similar to 12,000 K, respectively, and we show that such stars with masses greater than or similar to 20 M (circle dot) and greater than or similar to 50 M (circle dot), respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel at z (phot) similar or equal to 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.
  •  
10.
  • Meena, Ashish Kumar, et al. (författare)
  • Two Lensed Star Candidates at z ≃ 4.8 behind the Galaxy Cluster MACS J0647.7+7015
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known, zphot ≃ 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least ≳90 and ≳50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of ∼[103–105] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of ∼10,000 K, and ∼12,000 K, respectively, and we show that such stars with masses ≳20 M⊙ and ≳50 M⊙, respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel at zphot ≃ 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.
  •  
11.
  • Mehta, Vihang, et al. (författare)
  • A Spatially Resolved Analysis of Star Formation Burstiness by Comparing UV and Hα in Galaxies at z ∼ 1 with UVCANDELS
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 952:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and Hα emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 108−11.5M⊙. Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and Hα to compute the average UV-to-Hα luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼109.5M⊙, at all radii, have a UV-to-Hα ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳109.5M⊙, the UV-to-Hα ratio is elevated toward their outskirts (R/Reff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-Hα ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼107.5M⊙ kpc−2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness.
  •  
12.
  • Nabizadeh, Armin, et al. (författare)
  • A search for high-redshift direct-collapse black hole candidates in the PEARLS north ecliptic pole field
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct-collapse black holes (DCBHs) of mass ∼ 104-105 M⊙ that form in HI-cooling halos in the early Universe are promising progenitors of the greater than or similar to 109 M⊙ supermassive black holes that fuel observed z greater than or similar to 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up to z ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈ 1-5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2 in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼ 29 AB mag. We identify two objects with spectral energy distributions consistent with the Pacucci et al. (2016) DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of less than or similar to 5x10-4 comoving Mpc-3 (cMpc-3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the Pacucci et al. (2016) models at z ≈ 6-14.
  •  
13.
  • Pharo, John, et al. (författare)
  • Emission-line Metallicities from the Faint Infrared Grism Survey and VLT/MUSE
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 874:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We derive direct-measurement gas-phase metallicities of 7.4 < 12 + log (O/H) < 8.4 for 14 low-mass emissionline galaxies at 0.3 < z < 0.8 identified in the Faint Infrared Grism Survey. We use deep slitless G102 grism spectroscopy of the Hubble Ultra Deep Field, dispersing light from all objects in the field at wavelengths between 0.85 and 1.15 mu m. We run an automatic search routine on these spectra to robustly identify 71 emission-line sources, using archival data from Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) to measure additional lines and confirm redshifts. We identify 14 objects with 0.3 < z < 0.8 with measurable [O Iota Iota Iota] lambda 4363 angstrom emission lines in matching VLT/MUSE spectra. For these galaxies, we derive direct electron-temperature gas-phase metallicities with a range of 7.4 < 12 + log (O/H) < 8.4. With matching stellar masses in the range of 10(7.9) M-circle dot < M* < 10(10.4) M-circle dot, we construct a mass-metallicity (MZ) relation and find that the relation is offset to lower metallicities compared to metallicities derived from alternative methods (e.g., R-23,O3N2, N2O2) and continuum selected samples. Using star formation rates derived from the H alpha emission line, we calculate our galaxies' position on the Fundamental Metallicity Relation, where we also find an offset toward lower metallicities. This demonstrates that this emission-line-selected sample probes objects of low stellar masses but even lower metallicities than many comparable surveys. We detect a trend suggesting galaxies with higher Specific Star Formation (SSFR) are more likely to have lower metallicity. This could be due to cold accretion of metal-poor gas that drives star formation, or could be because outflows of metal-rich stellar winds and SNe ejecta are more common in galaxies with higher SSFR.
  •  
14.
  • Pirzkal, Norbert, et al. (författare)
  • A Two-dimensional Spectroscopic Study of Emission-line Galaxies in the Faint Infrared Grism Survey (FIGS). I. Detection Method and Catalog
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 868:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from the application of a two-dimensional emission line detection method, EMission-line two-Dimensional (EM2D), to the near-infrared G102 grism observations obtained with the Wide-Field Camera 3 (WFC3) as part of the Cycle 22 Hubble Space Telescope Treasury Program: the Faint Infrared Grism Survey (FIGS). Using the EM2D method, we have assembled a catalog of emission line galaxies (ELGs) with resolved star formation from each of the four FIGS fields. Not only can one better assess the global properties of ELGs, but the EM2D method allows for the analysis and improved study of the individual emission-line region within each galaxy. This paper includes a description of the methodology, advantages, and the first results of the EM2D method applied to ELGs in FIGS. The advantage of 2D emission line measurements includes significant improvement of galaxy redshift measurements, approaching the level of accuracy seen in high-spectral-resolution data, but with greater efficiency; and the ability to identify and measure the properties of multiple sites of star formation and over scales of similar to 1 kpc within individual galaxies out to z similar to 4. The EM2D method also significantly improves the reliability of high-redshift (z similar to 7) Ly alpha detections. Coupled with the wide field of view and high efficiency of space-based grism observations, EM2D provides a noteworthy improvement on the physical parameters that can be extracted from grism observations.
  •  
15.
  • Pirzkal, Norbert, et al. (författare)
  • FIGS-Faint Infrared Grism Survey : Description and Data Reduction
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 846:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8 mu m-1.15 mu m continuous coverage) with a total exposure time of 40 orbits (approximate to 100 kilo-seconds) per field. This reaches a 3 sigma continuum depth of approximate to 26 AB magnitudes and probes emission lines to similar to 10(-17) erg s(-1) cm(-2). This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10,000 spectra of over 2000 distinct sources brighter than m(F105W) = 26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D spectra for each object in the survey.
  •  
16.
  • Rutkowski, Michael J., et al. (författare)
  • The Lyman Continuum Escape Fraction of Emission Line-selected z similar to 2.5 Galaxies Is Less Than 15%
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 841:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z similar to 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O II] nebular emission (N = 208) and, within a narrow redshift range, on [O III]/[O II]. We measure 1 sigma upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O II] emitters, f(esc) less than or similar to 5.6%, and strong [O III]/[O II] > 5 ELGs, f(esc) less than or similar to 14.0%. Our observations are not deep enough to detect f(esc) similar to 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z similar to 2. Thus, unless the number of extreme emission line galaxies grows substantially to z greater than or similar to 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.
  •  
17.
  • Sattari, Zahra, et al. (författare)
  • Fraction of Clumpy Star-forming Galaxies at 0.5 ≤ z ≤ 3 in UVCANDELS : Dependence on Stellar Mass and Environment
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 951:2
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution imaging of galaxies in rest-frame UV has revealed the existence of giant star-forming clumps prevalent in high-redshift galaxies. Studying these substructures provides important information about their formation and evolution and informs theoretical galaxy evolution models. We present a new method to identify clumps in galaxies' high-resolution rest-frame UV images. Using imaging data from CANDELS and UVCANDELS, we identify star-forming clumps in an HST/F160W ≤ 25 AB mag sample of 6767 galaxies at 0.5 ≤ z ≤ 3 in four fields, GOODS-N, GOODS-S, EGS, and COSMOS. We use a low-passband filter in Fourier space to reconstruct the background image of a galaxy and detect small-scale features (clumps) on the background-subtracted image. Clumpy galaxies are defined as those having at least one off-center clump that contributes a minimum of 10% of the galaxy's total rest-frame UV flux. We measure the fraction of clumpy galaxies (fclumpy) as a function of stellar mass, redshift, and galaxy environment. Our results indicate that fclumpy increases with redshift, reaching ∼65% at z ∼ 1.5. We also find that fclumpy in low-mass galaxies () is 10% higher compared to that of their high-mass counterparts (). Moreover, we find no evidence of significant environmental dependence of fclumpy for galaxies at the redshift range of this study. Our results suggest that the fragmentation of gas clouds under violent disk instability remains the primary driving mechanism for clump formation, and incidents common in dense environments, such as mergers, are not the dominant processes.
  •  
18.
  • Smith, Brent M., et al. (författare)
  • Lyman Continuum Emission from Active Galactic Nuclei at 2.3 ≲ z ≲ 3.7 in the UVCANDELS Fields
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of our search for Lyman continuum (LyC)-emitting (weak) active galactic nuclei (AGN) at redshifts 2.3 ≲ z ≲ 4.9 from Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) F275W observations in the Ultraviolet Imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (UVCANDELS) fields. We also include LyC emission from AGN using HST WFC3 F225W, F275W, and F336W imaging found in Early Release Science (ERS) and Hubble Deep UV Legacy Survey data. We performed exhaustive queries of the Vizier database to locate AGN with high-quality spectroscopic redshifts. In total, we found 51 AGN that met our criteria within the UVCANDELS and ERS footprints. Out of these 51, we find 12 AGN that had ≥4σ detected LyC flux in the WFC3/UVIS images. Using a wide variety of space-based plus ground-based data, ranging from X-ray to radio wavelengths, we fit the multiwavelength photometric data of each AGN to a CIGALE spectral energy distribution (SED) using AGN models and correlate various SED parameters to the LyC flux. Kolmogorov–Smirnov tests of the SED parameter distributions for the LyC-detected and nondetected AGN showed they are likely not distinct samples. However, we find that the X-ray luminosity, star formation onset age, and disk luminosity show strong correlations relative to their emitted LyC flux. We also find strong correlations of the LyC flux to several dust parameters, i.e., polar and toroidal dust emission and 6 μm luminosity, and anticorrelations with metallicity and AFUV. We simulate the LyC escape fraction (fesc) using the CIGALE and intergalactic medium transmission models for the LyC-detected AGN and find an average fesc ≃ 18%, weighted by uncertainties. We stack the LyC fluxes of subsamples of AGN according to the wavelength continuum region in which they are detected and find no significant distinctions in their LyC emission, although our submillimeter-detected F336W sample (3.15 < z < 3.71) shows the brightest stacked LyC flux. These findings indicate that LyC production and escape in AGN are more complicated than the simple assumption of thermal emission and a 100% escape fraction. Further testing of AGN models with larger samples than presented here is needed.
  •  
19.
  • Spatially Resolved Stellar Populations of 0.3 < z < 6.0 Galaxies in WHL 0137–08 and MACS 0647+70 Clusters as Revealed by JWST : How Do Galaxies Grow and Quench over Cosmic Time?
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the spatially resolved stellar populations of 444 galaxies at 0.3 < z < 6.0 in two clusters (WHL 0137–08 and MACS 0647+70) and a blank field, combining imaging data from the Hubble Space Telescope and JWST to perform spatially resolved spectral energy distribution (SED) modeling using ᴘɪXᴇᴅꜰɪᴛ. The high spatial resolution of the imaging data combined with magnification from gravitational lensing in the cluster fields allows us to resolve a large fraction of our galaxies (109) to subkiloparsec scales. At redshifts around cosmic noon and higher (2.5 ≲ z ≲ 6.0), we find mass-doubling times to be independent of radius, inferred from flat specific star formation rate (sSFR) radial profiles and similarities between the half-mass and half-SFR radii. At lower redshifts (1.5 ≲ z ≲ 2.5), a significant fraction of our star-forming galaxies shows evidence for nuclear starbursts, inferred from a centrally elevated sSFR and a much smaller half-SFR radius compared to the half-mass radius. At later epochs, we find more galaxies suppress star formation in their centers but are still actively forming stars in the disk. Overall, these trends point toward a picture of inside-out galaxy growth consistent with theoretical models and simulations. We also observe a tight relationship between the central mass surface density and global stellar mass with ∼0.38 dex scatter. Our analysis demonstrates the potential of spatially resolved SED analysis with JWST data. Future analysis with larger samples will be able to further explore the assembly of galaxy mass and the growth of their structures.
  •  
20.
  • Vanzella, Eros, et al. (författare)
  • JWST/NIRCam Probes Young Star Clusters in the Reionization Era Sunrise Arc
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Star cluster formation in the early universe and its contribution to reionization remains largely unconstrained to date. Here we present JWST/NIRCam imaging of the most highly magnified galaxy known at z ∼ 6, the Sunrise arc. We identify six young massive star clusters (YMCs) with measured radii spanning from ∼20 down to ∼1 pc (corrected for lensing magnification), estimated stellar masses of ∼106–7 M⊙, and ages of 1–30 Myr based on SED fitting to photometry measured in eight filters extending to rest frame 7000 Å. The resulting stellar mass surface densities are higher than 1000 M⊙ pc−2 (up to a few 105 M⊙ pc−2), and their inferred dynamical ages qualify the majority of these systems as gravitationally bound stellar clusters. The star cluster ages map the progression of star formation along the arc, with two evolved systems (≳10 Myr old) followed by very young clusters. The youngest stellar clusters (<5 Myr) show evidence of prominent Hβ+[O ııı] emission based on photometry with equivalent widths larger than >1000 Å rest frame and are hosted in a 200 pc sized star-forming complex. Such a region dominates the ionizing photon production with a high efficiency log(ξion [Hz erg-1]~25.7 . A significant fraction of the recently formed stellar mass of the galaxy (10%–30%) occurred in these YMCs. We speculate that such sources of ionizing radiation boost the ionizing photon production efficiency, which eventually carves ionized channels that might favor the escape of Lyman continuum radiation. The survival of some of the clusters would make them the progenitors of massive and relatively metal-poor globular clusters in the local universe.
  •  
21.
  • Welch, Brian, et al. (författare)
  • A highly magnified star at redshift 6.2
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 603:7903, s. 815-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs(1,2). Individual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several individual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing(3-6). Here we report observations of a more distant and persistent magnified star at a redshift of 6.2 +/- 0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137-08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, -10 +/- 2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.
  •  
22.
  • Welch, Brian, et al. (författare)
  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z=6.2
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 940
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitationally lensed star WHL 0137-LS, nicknamed Earendel, was identified with a photometric redshift z (phot) = 6.2 +/- 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8-5.0 mu m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to mu > 4000 and restricting the source plane radius further to r < 0.02 pc, or similar to 4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T (eff) similar to 13,000-16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log(L)=5.8 L-theta, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.
  •  
23.
  • Welch, Brian, et al. (författare)
  • RELICS : Small-scale Star Formation in Lensed Galaxies at z=6-10
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 943:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed observations of star-forming galaxies at high redshift are critical to understanding the formation and evolution of the earliest galaxies. Gravitational lensing provides an important boost, allowing observations at physical scales unreachable in unlensed galaxies. We present three lensed galaxies from the RELICS survey at z (phot) = 6-10, including the most highly magnified galaxy at z (phot) similar to 6 (WHL 0137-zD1, dubbed the Sunrise Arc), the brightest known lensed galaxy at z (phot) similar to 6 (MACS 0308-zD1), and the only spatially resolved galaxy currently known at z (phot) similar to 10 (SPT 0615-JD). The Sunrise Arc contains seven star-forming clumps with delensed radii as small as 3 pc, the smallest spatial scales yet observed in a z > 6 galaxy, while SPT 0615-JD contains features measuring a few tens of parsecs. MACS 0308-zD1 contains an r similar to 30 pc clump with a star formation rate (SFR) of similar to 3 M (circle dot) yr(-1), giving it an SFR surface density of sigma(SFR) similar to 10(3) M (circle dot) yr(-1) kpc(-2). These galaxies provide a unique window into small-scale star formation during the epoch of reionization. They will be excellent targets for future observations with JWST, including one approved program targeting the Sunrise Arc.
  •  
24.
  • Windhorst, Rogier A., et al. (författare)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy