SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wingen A.) "

Sökning: WFRF:(Wingen A.)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Blanken, M. A. J. T., et al. (författare)
  • Sex-specifics of ECT outcome
  • 2023
  • Ingår i: Journal of Affective Disorders. - : ELSEVIER. - 0165-0327 .- 1573-2517. ; 326, s. 243-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Electroconvulsive therapy (ECT) is the most effective treatment for patients with severe major depressive disorder (MDD). Given the known sex differences in MDD, improved knowledge may provide more sex-specific recommendations in clinical guidelines and improve outcome. In the present study we examine sex differences in ECT outcome and its predictors. Methods: Clinical data from 20 independent sites participating in the Global ECT-MRI Research Collaboration (GEMRIC) were obtained for analysis, totaling 500 patients with MDD (58.6 % women) with a mean age of 54.8 years. Severity of depression before and after ECT was assessed with validated depression scales. Remission was defined as a HAM-D score of 7 points or below after ECT. Variables associated with remission were selected based on literature (i.e. depression severity at baseline, age, duration of index episode, and presence of psychotic symptoms). Results: Remission rates of ECT were independent of sex, 48.0 % in women and 45.7 % in men (X2(1) = 0.2, p = 0.70). In the logistic regression analyses, a shorter index duration was identified as a sex-specific predictor for ECT outcome in women (X2(1) = 7.05, p = 0.01). The corresponding predictive margins did show overlapping confidence intervals for men and women. Conclusion: The evidence provided by our study suggests that ECT as a biological treatment for MDD is equally effective in women and men. A shorter duration of index episode was an additional sex-specific predictor for remission in women. Future research should establish whether the confidence intervals for the corresponding predictive margins are overlapping, as we find, or not.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Bruin, WB, et al. (författare)
  • Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters
  • 2020
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1, s. 342-
  • Tidskriftsartikel (refereegranskat)abstract
    • No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker.
  •  
12.
  •  
13.
  • Thompson, PM, et al. (författare)
  • ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
  • 2020
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1, s. 100-
  • Tidskriftsartikel (refereegranskat)abstract
    • This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of “big data” (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA’s activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
  •  
14.
  •  
15.
  • Gerards, M., et al. (författare)
  • Alzheimer's Disease Plasma Biomarkers Distinguish Clinical Diagnostic Groups in Memory Clinic Patients
  • 2022
  • Ingår i: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 51:2, s. 182-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Several recent research studies show high performance of blood biomarkers to identify Alzheimer's disease also in the pre-dementia mild cognitive impairment (MCI) stage, but data from the routine clinical care memory clinic setting are needed. Methods: We examined plasma samples of 144 memory clinic patients, including dementia of Alzheimer type (DAT, n = 54), MCI (n = 57), and subjective cognitive decline (SCD, n = 33), who either presented as self-referrals or were referred by general practitioners or neurologists or psychiatrists. The plasma biomarkers, amyloid-beta42 (Ass42), amyloid-beta40 (Ass40), phospho-Tau181 (pTau181), total-tau (tTau), and neurofilament light (NFL), as well as different ratios, were measured using the ultrasensitive single molecule array (Simoa) immunoassay technology. Statistical analysis including Kruskal-Wallis test, linear regression, and receiver operating characteristics analyses was performed. Results: Of the single markers, we observed statistically significant group effects of pTau181 (H(2) = 34.43, p < 0.001) and NFL (H(2) = 27.66, p < 0.001). All individual group comparisons of pTau181 were significant, while the contrast of SCD versus MCI for NFL was not significant. In addition, the ratios of Ass42/Ass40 (H(2) = 7.50, p = 0.02) and pTau181/Ass42 (H(2) = 25.26, p < 0.001) showed significant group effects with significant difference between all groups for pTau181/Ass42 and an SCD versus MCI difference for Ass42/Ass40. PTau181 showed the highest area under the curve of 0.85 for the discrimination of SCD and DAT with a sensitivity of 80% and a specificity of 79% at a cut-off of 12.2 pg/mL. Age influenced Ass42, Ass40, and NFL concentrations. Conclusion: Plasma pTau181 and NFL, as well as the ratios Ass42/Ass40 and pTau181/Ass42, are biomarkers, which can differentiate diagnostic groups in a memory clinic setting outside of research studies.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Weeland, CJ, et al. (författare)
  • The thalamus and its subnuclei-a gateway to obsessive-compulsive disorder
  • 2022
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 12:1, s. 70-
  • Tidskriftsartikel (refereegranskat)abstract
    • Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered (https://osf.io/73dvy) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = −0.15 to −0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.
  •  
20.
  •  
21.
  • Yun, JY, et al. (författare)
  • Corrigendum
  • 2020
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 143:5, s. e44-
  • Tidskriftsartikel (refereegranskat)
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Bäckström, Torbjörn, et al. (författare)
  • Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons
  • 2011
  • Ingår i: Neuroscience. - Oxford : Elsevier BV. - 0306-4522 .- 1873-7544. ; 191:Special issue, s. 46-54
  • Forskningsöversikt (refereegranskat)abstract
    • Some women have negative mood symptoms, caused by progestagens in hormonal contraceptives or sequential hormone therapy or by progesterone in the luteal phase of the menstrual cycle, which may be attributed to metabolites acting on the GABA-A receptor. The GABA system is the major inhibitory system in the adult CNS and most positive modulators of the GABA-A receptor (benzodiazepines, barbiturates, alcohol, GABA steroids), induce inhibitory (e.g. anesthetic, sedative, anticonvulsant, anxiolytic) effects. However, some individuals have adverse effects (seizures, increased pain, anxiety, irritability, aggression) upon exposure. Positive GABA-A receptor modulators induce strong paradoxical effects including negative mood in 3%-8% of those exposed, while up to 25% have moderate symptoms. The effect is biphasic: low concentrations induce an adverse anxiogenic effect while higher concentrations decrease this effect and show inhibitory, calming properties. The prevalence of premenstrual dysphoric disorder (PMDD) is also 3%-8% among women in fertile ages, and up to 25% have more moderate symptoms of premenstrual syndrome (PMS). Patients with PMDD have severe luteal phase-related symptoms and show changes in GABA-A receptor sensitivity and GABA concentrations. Findings suggest that negative mood symptoms in women with PMDD are caused by the paradoxical effect of allopregnanolone mediated via the GABA-A receptor, which may be explained by one or more of three hypotheses regarding the paradoxical effect of GABA steroids on behavior: (1) under certain conditions, such as puberty, the relative fraction of certain GABA-A receptor subtypes may be altered, and at those subtypes the GABA steroids may act as negative modulators in contrast to their usual role as positive modulators; (2) in certain brain areas of vulnerable women the transmembrane C1(-) gradient may be altered by factors such as estrogens that favor excitability; (3) inhibition of inhibitory neurons may promote disinhibition, and hence excitability. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain. (C) 2011 Published by Elsevier Ltd on behalf of IBRO.
  •  
29.
  • Ossewaarde, Lindsey, et al. (författare)
  • Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase
  • 2010
  • Ingår i: Social cognitive and affective neuroscience. - : Oxford University Press (OUP). - 1749-5024 .- 1749-5016.
  • Tidskriftsartikel (refereegranskat)abstract
    • The premenstrual phase of the menstrual cycle is associated with marked changes in normal and abnormal motivated behaviors. Animal studies suggest that such effects may result from actions of gonadal hormones on the mesolimbic dopamine (DA) system. We therefore investigated premenstrual changes in reward-related neural activity in terminal regions of the DA system in humans. Twenty-eight healthy young women underwent functional magnetic resonance imaging on 2 days during the menstrual cycle, once during the late follicular phase and once during the premenstrual phase, in counterbalanced order. Using a modified version of the monetary incentive delay task, we assessed responsiveness of the ventral striatum to reward anticipation. Our results show enhanced ventral striatal responses during the premenstrual as compared to the follicular phase. Moreover, this effect was most pronounced in women reporting more premenstrual symptoms. These findings provide support for the notion that changes in functioning of mesolimbic incentive processing circuits may underlie premenstrual changes in motivated behaviors. Notably, increases in reward-cue responsiveness have previously been associated with DA withdrawal states. Our findings therefore suggest that the sharp decline of gonadal hormone levels in the premenstrual phase may trigger a similar withdrawal-like state.
  •  
30.
  • Ossewaarde, Lindsey, et al. (författare)
  • Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity
  • 2013
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 34:5, s. 1187-1193
  • Tidskriftsartikel (refereegranskat)abstract
    • Premenstrual increases in negative mood are thought to arise from changes in gonadal hormone levels, presumably by influencing mood regulation and stress sensitivity. The amygdala plays a major role in this context, and animal studies suggest that gonadal hormones influence its morphology. Here, we investigated whether amygdala morphology changes over the menstrual cycle and whether this change explains differences in stress sensitivity. Twenty-eight young healthy women were investigated once during the premenstrual phase and once during the late follicular phase. T1-weighted anatomical images of the brain were acquired using magnetic resonance imaging and analyzed with optimized voxel-based morphometry. To measure mood regulation and stress sensitivity, negative affect was assessed after viewing strongly aversive as well as neutral movie clips. Our results show increased gray matter volume in the dorsal part of the left amygdala during the premenstrual phase when compared with the late follicular phase. This volume increase was positively correlated with the premenstrual increase in stress-induced negative affect. This is the first study showing structural plasticity of the amygdala in humans at the macroscopic level that is associated with both endogenous gonadal hormone fluctuations and stress sensitivity. These results correspond with animal findings of gonadal hormone-mediated neural plasticity in the amygdala and have implications for understanding the pathogenesis of specific mood disorders associated with hormonal fluctuations. Hum Brain Mapp, 2013. (c) 2011 Wiley Periodicals, Inc.
  •  
31.
  • Ossewaarde, Lindsey, et al. (författare)
  • Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle
  • 2010
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530 .- 1873-3360. ; 35:1, s. 47-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Hormonal fluctuations across the menstrual cycle are thought to play a central role in premenstrual mood symptoms. In agreement, fluctuations in gonadal hormone levels affect brain processes in regions involved in emotion regulation. Recent findings, however, implicate psychological stress as a potential mediating factor and thus, we investigated whether effects of moderate psychological stress on relevant brain regions interact with menstrual cycle phase. Twenty-eight healthy women were tested in a crossover design with menstrual cycle phase (late luteal versus late follicular) and stress (stress induction versus control) as within-subject factors. After stress induction (or control), we probed neural responses to facial expressions using fMRI. During the late luteal phase, negative affect was highest and the stress-induced increase in heart rate was mildly augmented. fMRI data of the control condition replicate previous findings of elevated amygdala and medial prefrontal cortex responses when comparing the late luteal with the late follicular phase. Importantly, stress induction had opposite effects in the two cycle phases, with unexpected lower response magnitudes in the late luteal phase. Moreover, the larger the increase in allopregnanolone concentration across the menstrual cycle was, the smaller the amygdala and medial prefrontal cortex responses were after stress induction in the late luteal phase. Our findings show that moderate psychological stress influences menstrual cycle effects on activity in the emotion regulation circuitry. These results provide potential insights into how fluctuations in allopregnanolone that naturally occur during the menstrual cycle may change stress vulnerability.
  •  
32.
  • van Wingen, G. A., et al. (författare)
  • Gonadal hormone regulation of the emotion circuitry in humans
  • 2011
  • Ingår i: Neuroscience. - Oxford : Elsevier BV. - 0306-4522 .- 1873-7544. ; 191, s. 38-45
  • Forskningsöversikt (refereegranskat)abstract
    • Gonadal hormones are known to influence the regulation of emotional responses and affective states. Whereas fluctuations in progesterone and estradiol are associated with increased vulnerability for mood disorders, testosterone is mainly associated with social dominance, aggressive, and antisocial behavior. Here, we review recent functional neuroimaging studies that have started to elucidate how these hormones modulate the neural circuitry that is important for emotion regulation, which includes the amygdala and the medial prefrontal (mPFC) and orbitofrontal cortex (OFC). The amygdala is thought to generate emotional responses, and the prefrontal brain regions to regulate those responses. Overall, studies that have investigated women during different phases of the menstrual cycle suggest that progesterone and estradiol may have opposing actions on the amygdala and prefrontal cortex. In addition, the influence of exogenous progesterone appears to be dose-dependent. Endogenous testosterone concentrations are generally positively correlated to amygdala and OFC responses, and exogenous testosterone increases amygdala reactivity. Whereas the administration of progesterone increases amygdala reactivity and its connectivity with the mPFC, testosterone administration increases amygdala reactivity but decreases its connectivity with the OFC. We propose that this opposing influence on amygdala-prefrontal coupling may contribute to the divergent effects of progesterone and testosterone on emotion regulation and behavioral inhibition, respectively, which may promote the differential vulnerability to various psychiatric disorders between women and men. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
  •  
33.
  • van Wingen, G A, et al. (författare)
  • Progesterone selectively increases amygdala reactivity in women.
  • 2008
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 13:3, s. 325-33
  • Tidskriftsartikel (refereegranskat)abstract
    • The acute neural effects of progesterone are mediated by its neuroactive metabolites allopregnanolone and pregnanolone. These neurosteroids potentiate the inhibitory actions of gamma-aminobutyric acid (GABA). Progesterone is known to produce anxiolytic effects in animals, but recent animal studies suggest that pregnanolone increases anxiety after a period of low allopregnanolone concentration. This effect is potentially mediated by the amygdala and related to the negative mood symptoms in humans that are observed during increased allopregnanolone levels. Therefore, we investigated with functional magnetic resonance imaging (MRI) whether a single progesterone administration to healthy young women in their follicular phase modulates the amygdala response to salient, biologically relevant stimuli. The progesterone administration increased the plasma concentrations of progesterone and allopregnanolone to levels that are reached during the luteal phase and early pregnancy. The imaging results show that progesterone selectively increased amygdala reactivity. Furthermore, functional connectivity analyses indicate that progesterone modulated functional coupling of the amygdala with distant brain regions. These results reveal a neural mechanism by which progesterone may mediate adverse effects on anxiety and mood.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy