SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Winiwarter Wilfried) "

Sökning: WFRF:(Winiwarter Wilfried)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2017
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:5, s. 2307-2362
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 C UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 TgCH(4) yr (-1) (EDGAR v5.0) and 19.0 TgCH(4) yr(-1) (GAINS), consistent with the NGHGI estimates of 18.9 +/- 1.7 TgCH(4) yr(-1). The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 TgCH(4) yr(-1). Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 TgCH(4) yr(-1)) and surface network (24.4 TgCH(4) yr (-1)). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 TgCH(4) yr(-1). For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 TgN(2)Oyr(-1), respectively, agreeing with the NGHGI data (0.9 0.6 TgN(2)Oyr(-1)). Over the same period, the average of the three total TD global and regional inversions was 1.3 +/- 0.4 and 1.3 +/- 0.1 TgN(2)Oyr(-1), respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU CUK scale and at the national scale.
  •  
3.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2019
  • 2023
  • Ingår i: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1197-1268
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990-2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015-2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 TgCH(4) yr(-1) (EDGARv6.0, last year 2018) and 18.4 TgCH(4) yr(-1) (GAINS, last year 2015), close to the NGHGI estimates of 17 :5 +/- 2 :1 TgCH(4) yr(-1). TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 TgCH(4) yr(-1). Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 TgCH(4) yr(-1) inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH-HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 TgCH(4) yr(-1). For N2O emissions, over the 2015-2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 TgN(2)Oyr(-1), close to the NGHGI data (0 :8 +/- 55% TgN(2)Oyr(-1)). Over the same period, the mean of TD global and regional inversions was 1.4 TgN(2)Oyr(-1) (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 C UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs. The referenced dataset srelated to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023).
  •  
4.
  •  
5.
  • Tian, Hanqin, et al. (författare)
  • Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models : Magnitude, attribution, and uncertainty
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25:2, s. 640-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O-N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O-N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O-N/year to 3.3 Tg N2O-N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O-N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process-based simulations.
  •  
6.
  • Ytreberg, Erik, 1980, et al. (författare)
  • EMERGE deliverable 6.1. Baltic and North Sea report
  • 2023
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Shipping is responsible for a range of different pressures affecting air quality, climate, and the marine environment. However, most social and economic analysis of shipping have focused on air pollution assessment and how shipping may impact climate change and human health. This risks policies to be biased towards air pollution and climate change, while trading off impacts on the marine environment. One example is the IMO’s global sulphur cap, which requires shipowners to use a compliant fuel with a sulphur content of 0.5% (0.1% in SECA regions) or use alternative compliance options (scrubbers) that are effective in reducing sulphur oxide (SOX) emissions to the atmosphere. The scrubber process results in large volumes of acidic discharge water. Although regulations primarily target SOX removal, other pollutants such as polycyclic aromatic hydrocarbons (PAHs) and metals are transferred from the exhausts to the wash water and subsequently discharged to the marine environment. The aim of this deliverable has therefore been to develop a holistic framework to evaluate the impacts of shipping emissions, particularly those related to scrubbers, on the marine environment, human health, climate, and economy. The structure of this deliverable follows the well-established DAPSIR (Driver-Activity-Pressure-State-Impact-Response) framework, under which information, findings and conclusions from previous work packages are synthesized and integrated, including experiments of direct emissions from shipping to the marine environment (WP2) and the atmosphere (WP3), assessment of marine environmental impacts (WP2, WP4 and WP6), as well as human health and climate change impacts (WP5 and WP6). Finally, this deliverable provides recommendations and guidance for stakeholders and policymakers. The assessment is performed using a baseline scenario (year 2018) and three future scenarios (for year 2050) based on different projected future developments of shipping transport volumes and considering the development of ships regarding fuel efficiency and ship size. In this deliverable, we focused primarily on two of the different future scenarios, scenario 3 (high scrubber pressure) and scenario 8 (high use of liquefied natural gas (LNG) and methanol). The marine environmental risk assessment, performed in the Öresund region for the baseline scenario (2018), showed unacceptable risks when ships in the area were using open loop scrubbers. In the assessment, modelled predicted environmental concentrations (PECs) of open loop scrubber discharge water exceeded the tolerable marine threshold value (predicted no-effect concentration, PNEC) in almost the entire Öresund region. The PEC value was derived based on ship activity and discharges of scrubber water in 2018, while the PNEC value was derived based on the ecotoxicological assays performed within the EMERGE project. Notably, the modelling of open loop scrubber discharge water was performed using the ship traffic activity in 2018 when less than 200 ships in the Baltic Sea used scrubbers, collectively releasing 192 million tonnes of discharge water. By 2022 there were approximately 800 ships equipped with scrubbers in the Baltic Sea. In the high scrubber future scenario (S3) in 2050 this led to an assumption of the considerably higher scrubber water discharge (1740 million tonnes), representing almost one order of magnitude higher compared to our baseline scenario in 2018. In addition, our impact assessment, following Marine Environment Protection Committee (MEPC) guidelines, shows that a ban on discharge water from scrubbers should be considered in the entire Baltic and North Sea region, since all sea basins in the region fail to reach good environmental status (GES) as defined by the EU Marine Strategy Framework Directive (Directive 2008/56/EC). However, the costs of such a measure for the shipping sector (banning discharges from scrubbers, i.e., in practice a ban on scrubbers) have been questioned within the International Maritime Organisation (IMO). Therefore, EMERGE also focused on analysing to what extent the global scrubber fleet has reached break-even on their scrubber installations and the potential monetary gain of using Heavy Fuel Oil (HFO) as compared to the more expensive Marine Gas Oil (MGO) or Very Low Sulphur Fuel Oil (VLSFO). Our results showed that 51% of the global scrubber fleet had reached break-even by the end of 2022, resulting in a summarised balance of 4.7 billion €2019. In addition, the marine ecotoxicity damage cost, by not restricting scrubbers in the Baltic Sea Area, accumulated to >680 million €2019 from 2015 to end of 2022. For air quality, both future scenarios showed a decrease in shipping contribution to PM2.5 exposure by a factor of 2 to 3 compared to our baseline scenario in 2018. Scenario 8 is somewhat more efficient in decreasing the shipping originated PM2.5 than scenario 3. Using the Greenhouse gas and Air pollution Interactions and Synergies (GAINS) model for human health impact assessment in scenario 3 revealed the loss of life expectancy in most areas around the Baltic Sea, when considering all sources, to be limited to two to four months. However, the differences in life shortening between Scenarios 3 and 8 are two to three orders of magnitude lower when compared to human health impacts resulting from all sources, indicating that scrubbers alone have a minor impact on human health in the Baltic region from air quality perspective. For Öresund case the shipping-related health impacts from PM2.5 represented approximately 10% of the total burden of air pollution, in 2050 scenario simulations this burden decreased to 7-9%. Important improvement of air quality in the scenario simulations come also from reduction of NO2 which is a criteria pollutant regulated by the Air Quality Directive, where the decrease is 3 to 5-fold. In relative terms the shipping contribution to NO2 concentration levels, however, maintains similar, approximately 25%, as the land emissions are also expected to decrease. The GAINS health impact assessment for the Baltic Sea was compared to the Solent region using a statistical technique. The latter study showed that a relatively small fraction of all premature deaths in Southampton, Portsmouth, Poole, Christchurch & Bournemouth are attributable to air pollution from shipping, corroborating the conclusion that the deployment scrubbers alone has a minor impact on human life shortening through atmospheric transport.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (4)
rapport (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Winiwarter, Wilfried (6)
Ciais, Philippe (3)
Thompson, Rona L. (3)
Bastviken, David (2)
McNorton, Joe (2)
Haussaire, Jean Matt ... (2)
visa fler...
Janssens-Maenhout, G ... (2)
Peters, Glen P. (2)
McGrath, Matthew J. (2)
Peylin, Philippe (2)
Aalto, Tuula (2)
Brunner, Dominik (2)
Saunois, Marielle (2)
Tsuruta, Aki (2)
Peng, Changhui (1)
Fridell, Erik, 1963 (1)
Broström, Göran (1)
Granberg, Maria (1)
Hassellöv, Ida-Maja, ... (1)
Lunde Hermansson, An ... (1)
Magnusson, Kerstin (1)
Ytreberg, Erik, 1980 (1)
van der Werf, Guido ... (1)
Balsamo, Gianpaolo (1)
Canadell, Josep G. (1)
Jackson, Robert B. (1)
Arneth, Almut (1)
Zaehle, Sönke (1)
Jutterström, Sara (1)
Berglund, Christer (1)
Moldanova, Jana (1)
Guenther, Alex (1)
Höglund-Isaksson, Le ... (1)
Simpson, David (1)
Palmer, Paul I. (1)
Kukkonen, Jaakko (1)
Berchet, Antoine (1)
Pison, Isabelle (1)
Bergamaschi, Peter (1)
Houweling, Sander (1)
Williams, Ian (1)
Wagner, Fabian (1)
Klaassen, Ger (1)
Tohka, Antti (1)
Amann, Markus (1)
Steinbrecher, Rainer (1)
Olin, Stefan (1)
Chang, Jinfeng (1)
Zaehle, Soenke (1)
Vuichard, Nicolas (1)
visa färre...
Lärosäte
Linköpings universitet (3)
Luleå tekniska universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy