SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wisse M.) "

Sökning: WFRF:(Wisse M.)

  • Resultat 1-47 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST
  • 2009
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104017-
  • Tidskriftsartikel (refereegranskat)abstract
    • Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P-NBI <= 3.8 MW H-mode at I-P = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I-P and more strongly with B-t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P-phi approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E-r, show that the position of steepest gradients in electron pressure and E-r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T-e pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.
  •  
5.
  • Lloyd, B., et al. (författare)
  • Overview of physics results from MAST
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9, s. 094013 (paper no.)-
  • Tidskriftsartikel (refereegranskat)abstract
    • Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%.
  •  
6.
  • Lloyd, B., et al. (författare)
  • Overview of physics results from MAST
  • 2007
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 47:10, s. S658-S667
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial advances have been made on the Mega AmpÚre Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfvén cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements.
  •  
7.
  • Wisse, L. E.M., et al. (författare)
  • Downstream effects of polypathology on neurodegeneration of medial temporal lobe subregions
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The medial temporal lobe (MTL) is a nidus for neurodegenerative pathologies and therefore an important region in which to study polypathology. We investigated associations between neurodegenerative pathologies and the thickness of different MTL subregions measured using high-resolution post-mortem MRI. Tau, TAR DNA-binding protein 43 (TDP-43), amyloid-β and α-synuclein pathology were rated on a scale of 0 (absent)—3 (severe) in the hippocampus and entorhinal cortex (ERC) of 58 individuals with and without neurodegenerative diseases (median age 75.0 years, 60.3% male). Thickness measurements in ERC, Brodmann Area (BA) 35 and 36, parahippocampal cortex, subiculum, cornu ammonis (CA)1 and the stratum radiatum lacunosum moleculare (SRLM) were derived from 0.2 × 0.2 × 0.2 mm3 post-mortem MRI scans of excised MTL specimens from the contralateral hemisphere using a semi-automated approach. Spearman’s rank correlations were performed between neurodegenerative pathologies and thickness, correcting for age, sex and hemisphere, including all four proteinopathies in the model. We found significant associations of (1) TDP-43 with thickness in all subregions (r = − 0.27 to r = − 0.46), and (2) tau with BA35 (r = − 0.31) and SRLM thickness (r = − 0.33). In amyloid-β and TDP-43 negative cases, we found strong significant associations of tau with ERC (r = − 0.40), BA35 (r = − 0.55), subiculum (r = − 0.42) and CA1 thickness (r = − 0.47). This unique dataset shows widespread MTL atrophy in relation to TDP-43 pathology and atrophy in regions affected early in Braak stageing and tau pathology. Moreover, the strong association of tau with thickness in early Braak regions in the absence of amyloid-β suggests a role of Primary Age-Related Tauopathy in neurodegeneration.
  •  
8.
  • Roest, Pauline A. M., et al. (författare)
  • Exposure of neural crest cells to elevated glucose leads to congenital heart defects, an effect that can be prevented by N-acetylcysteine
  • 2007
  • Ingår i: Birth defects research. Clinical and molecular teratology. - : Wiley. - 1542-0752 .- 1542-0760. ; 79:3, s. 231-235
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Diabetes mellitus during pregnancy increases the risk for congenital heart disease in the offspring. The majority of the cardiovascular malformations occur in the outflow tract and pharyngeal arch arteries, where neural crest cells are essential for normal development. We studied the effects of specific exposure of neural crest cells to elevated glucose on heart development. Antioxidants reduce the damaging effect of glucose on neural crest cells in vitro; therefore, we investigated the effect of supplementing N-acetylcysteine in vivo. METHODS: Cardiac neural crest of HH 8-12 chicken embryos was directly exposed by a single injection in the neural tube with 30 mM D-glucose (or 30 mM L-glucose as a control). To examine the effect of a reduction in oxidative stress, we added 2 mM N-acetylcysteine to the injected D-glucose. RESULTS: Exposure of neural crest cells to elevated D-glucose-induced congenital heart malformations in 82% of the embryos. In the embryos injected with L-glucose, only 9% developed a heart malformation. As expected, all malformations were located in the outflow tract and pharyngeal arch arteries. The frequency of heart malformations decreased from 82% to 27% when 2 mM N-acetylcysteine was added to the injected D-glucose. CONCLUSIONS: These data are the first to confirm that the vulnerability of neural crest cells to elevated glucose induces congenital heart malformations. The fact that N-acetylcysteine limits the teratogenicity of glucose implies that its damaging effect is mediated by an increase of oxidative stress in the neural crest cells.
  •  
9.
  • Zuroff, Leah, et al. (författare)
  • Self- and Partner-Reported Subjective Memory Complaints : Association with Objective Cognitive Impairment and Risk of Decline
  • 2022
  • Ingår i: Journal of Alzheimer's Disease Reports. - 2542-4823. ; 6:1, s. 411-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Episodic memory decline is a hallmark of Alzheimer's disease (AD). Subjective memory complaints (SMCs) may represent one of the earliest signs of impending cognitive decline. The degree to which self- or partner-reported SMCs predict cognitive change remains unclear. Objective: We aimed to evaluate the relationship between self- and partner-reported SMCs, objective cognitive performance, AD biomarkers, and risk of future decline in a well-characterized longitudinal memory center cohort. We also evaluated whether study partner characteristics influence reports of SMCs. Methods: 758 participants and 690 study partners were recruited from the Penn Alzheimer's Disease Research Center Clinical Core. Participants included those with Normal Cognition, Mild Cognitive Impairment, and AD. SMCs were measured using the Prospective and Retrospective Memory Questionnaire (PRMQ), and were evaluated for their association with cognition, genetic, plasma, and neuroimaging biomarkers of AD, cognitive and functional decline, and diagnostic progression over an average of four years. Results: We found that partner-reported SMCs were more consistent with cognitive test performance and increasing symptom severity than self-reported SMCs. Partner-reported SMCs showed stronger correlations with AD-associated brain atrophy, plasma biomarkers of neurodegeneration, and longitudinal cognitive and functional decline. A 10-point increase on baseline PRMQ increased the annual risk of diagnostic progression by approximately 70%. Study partner demographics and relationship to participants influenced reports of SMCs in AD participants only. Conclusion: Partner-reported SMCs, using the PRMQ, have a stronger relationship with the neuroanatomic and cognitive changes associated with AD than patient-reported SMCs. Further work is needed to evaluate whether SMCs could be used to screen for future decline.
  •  
10.
  • Lyu, Xueying, et al. (författare)
  • Tau-neurodegeneration mismatch reveals vulnerability and resilience to comorbidities in Alzheimer's continuum
  • Ingår i: Alzheimer's and Dementia. - 1552-5260.
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid “negative”) patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.
  •  
11.
  • Marques, André R A, et al. (författare)
  • Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases.
  • 2016
  • Ingår i: Journal of Lipid Research. - 1539-7262. ; 57, s. 451-463
  • Tidskriftsartikel (refereegranskat)abstract
    • The membrane lipid glucosylceramide (GlcCer) is continuously formed and degraded. Cells express two GlcCer-degrading β-glucosidases, GBA and GBA2, located in and outside the lysosome, respectively. Here we demonstrate that through transglucosylation both GBA and GBA2 are able to catalyze in vitro the transfer of glucosyl-moieties from GlcCer to cholesterol, and vice versa. Furthermore, the natural occurrence of 1-O-cholesteryl-β-D-glucopyranoside (GlcChol) in mouse tissues and human plasma is demonstrated using LC-MS/MS and 13C6-labelled GlcChol as internal standard. In cells the inhibition of GBA increases GlcChol, whereas inhibition of GBA2 decreases glucosylated sterol. Similarly, in GBA2-deficient mice GlcChol is reduced. Depletion of GlcCer by inhibition of GlcCer synthase decreases GlcChol in cells and likewise in plasma of inhibitor-treated Gaucher disease patients. In tissues of mice with Niemann-Pick type C, a condition characterized by intralysosomal accumulation of cholesterol, marked elevations in GlcChol occur as well. When lysosomal accumulation of cholesterol is induced in cultured cells, GlcChol is formed via lysosomal GBA. This illustrates that reversible transglucosylation reactions are highly dependent on local availability of suitable acceptors. In conclusion, mammalian tissues contain GlcChol formed by transglucosylation through β-glucosidases using GlcCer as donor. Our findings reveal a novel metabolic function for GlcCer.
  •  
12.
  • Molin, Daniël G M, et al. (författare)
  • Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats
  • 2004
  • Ingår i: Birth Defects Research. Part A. Clinical and Molecular Teratology. - 1542-0752. ; 70:12, s. 927-938
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Maternal diabetes (MD) is a risk factor for offspring to develop cardiovascular anomalies; this is of growing clinical concern since the number of women in childbearing age with compromised glucose homeostasis is increasing. Hyperglycemia abrogates cardiovascular development in vitro; however, a link to cardiovascular defects in diabetic offspring remains to be investigated. METHODS: We have studied cardiovascular development in offspring of MD rats by examining serial histological sections of GD 12.0-18.0 offspring. Development of pharyngeal arch artery malformations was analyzed and related to intracardiac anomalies. RESULTS: Pharyngeal arch artery and intracardiac defects were present in 27 of 37 MD GD 13.0-18.0 offspring. Early sixth arch arteries showed abrogated arteriogenesis, whereas fourth arch artery defects developed as a result of abnormal remodeling. Morphometrical analysis showed increased apoptosis in regressing artery segments and reduced apoptosis in persisting artery segments. Double outlet right ventricle with infundibular stenosis (tetralogy of Fallot) was predominantly found in combination with sixth artery defects and pulmonary atresia. As confirmed by morphometric analysis and three-dimensional (3D)-reconstructions, outflow tract defects coincided with endocardial cushion hypoplasia. Cases with teratology of Fallot additionally showed a shorter outflow tract. No relation with apoptosis or disturbed neural crest cell migration was found. CONCLUSIONS: Our data uniquely demonstrate mechanistic differences involved in the development of sixth and fourth artery anomalies. Whereas increased apoptosis induces fourth artery anomalies, pulmonary outflow obstruction abrogates sixth artery differentiation independent of apoptosis. The model presented allows analysis of diabetic conditions on cardiovascular development in vivo, essential for elucidating this teratology.
  •  
13.
  • Ravikumar, Sadhana, et al. (författare)
  • Ex vivo MRI atlas of the human medial temporal lobe : characterizing neurodegeneration due to tau pathology
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
  •  
14.
  • Ravikumar, Sadhana, et al. (författare)
  • Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation
  • 2023
  • Ingår i: Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings. - 0302-9743 .- 1611-3349. - 9783031340475 ; 13939 LNCS, s. 692-704
  • Konferensbidrag (refereegranskat)abstract
    • When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace’s equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.
  •  
15.
  • Ravikumar, Sadhana, et al. (författare)
  • Postmortem imaging reveals patterns of medial temporal lobe vulnerability to tau pathology in Alzheimer’s disease
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer’s Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.
  •  
16.
  • Sadaghiani, Shokufeh, et al. (författare)
  • Associations of phosphorylated tau pathology with whole-hemisphere ex vivo morphometry in 7 tesla MRI
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2355-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. Results: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. Conclusion: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. Highlights: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.
  •  
17.
  • Stouffer, Kaitlin M, et al. (författare)
  • Amidst an amygdala renaissance in Alzheimer's disease
  • Ingår i: Brain : a journal of neurology. - 1460-2156.
  • Tidskriftsartikel (refereegranskat)abstract
    • The amygdala was highlighted as an early site for neurofibrillary tau tangle pathology in Alzheimer's disease in the seminal Braak & Braak article (1991). This knowledge has, however, only received traction recently with advances in imaging and image analysis techniques. Here, we provide a cross-disciplinary overview of pathology and neuroimaging studies on the amygdala. These studies provide strong support for an early role of the amygdala in Alzheimer's disease and the utility of imaging biomarkers of the amygdala in detecting early changes and predicting decline in cognitive functions and neuropsychiatric symptoms in early stages. We summarize the animal literature on connectivity of the amygdala, demonstrating that amygdala nuclei that show the earliest and strongest accumulation of neurofibrillary tangle pathology are those that are connected to brain regions that also show early neurofibrillary tangle accumulation. Additionally, we propose an alternative pathway of neurofibrillary tangle spreading within the medial temporal lobe between the amygdala and the anterior hippocampus. The proposed existence of this pathway is strengthened by novel experimental data on human functional connectivity. Finally, we summarize the functional roles of the amygdala, highlighting the correspondence between neurofibrillary tangle accumulation and symptomatic profiles in Alzheimer's disease. In summary, these findings provide a new impetus for studying the amygdala in Alzheimer's disease and a unique perspective to guide further study on neurofibrillary tangle spreading and the occurrence of neuropsychiatric symptoms in Alzheimer's disease.
  •  
18.
  • van Veluw, Susanne J, et al. (författare)
  • Hippocampal T2 hyperintensities on 7 Tesla MRI
  • 2013
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 3, s. 196-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal focal T2 hyperintensities (HT2Hs), also referred to as hippocampal sulcal cavities, are a common finding on Magnetic Resonance (MR) images. There is uncertainty about their etiology and clinical significance. In this study we aimed to describe these HT2Hs in more detail using high resolution 7 Tesla MR imaging, addressing 1) the MR signal characteristics of HT2Hs, 2) their occurrence frequency, 3) their location within the hippocampus, and 4) their relation with age. We also performed an explorative post-mortem study to examine the histology of HT2Hs. Fifty-eight persons without a history of invalidating neurological or psychiatric disease (mean age 64 ± 8 years; range 43-78 years), recruited through their general practitioners, were included in this study. They all underwent 7 Tesla MRI, including a T1, T2, and FLAIR image. MR signal characteristics of the HT2Hs were assessed on these images by two raters. Also, the location and number of the HT2Hs were assessed. In addition, four formalin-fixed brain slices from two subjects were scanned overnight. HT2Hs identified in these slices were subjected to histopathological analysis. HT2Hs were present in 97% of the subjects (median number per person 10; range 0-20). All HT2Hs detected on the T2 sequence were hypointense on T1 weighted images. Of all HT2Hs, 94% was hypointense and 6% hyperintense on FLAIR. FLAIR hypointense HT2Hs were all located in the vestigial sulcus of the hippocampus, FLAIR hyperintense HT2Hs in the hippocampal sulcus or the gray matter. Post-mortem MRI and histopathological analysis suggested that the hypointense HT2Hs on FLAIR were cavities filled with cerebrospinal fluid. A hyperintense HT2H on FLAIR proved to be a microinfarct upon microscopy. In conclusion, hippocampal T2Hs are extremely common and unrelated to age. They can be divided into two types (hypo- and hyperintense on FLAIR), probably with different etiology.
  •  
19.
  • Vlegels, Naomi, et al. (författare)
  • Does Loss of Integrity of the Cingulum Bundle Link Amyloid-β Accumulation and Neurodegeneration in Alzheimer's Disease?
  • 2022
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877. ; 89:1, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ) into plaques, aggregation of tau into neurofibrillary tangles, and neurodegenerative processes including atrophy. However, there is a poorly understood spatial discordance between initial Aβ deposition and local neurodegeneration. Objective: Here, we test the hypothesis that the cingulum bundle links Aβ deposition in the cingulate cortex to medial temporal lobe (MTL) atrophy. Methods: 21 participants with mild cognitive impairment (MCI) from the UMC Utrecht memory clinic (UMCU, discovery sample) and 37 participants with MCI from Alzheimer's Disease Neuroimaging Initiative (ADNI, replication sample) with available Aβ-PET scan, T1-weighted and diffusion-weighted MRI were included. Aβ load of the cingulate cortex was measured by the standardized uptake value ratio (SUVR), white matter integrity of the cingulum bundle was assessed by mean diffusivity and atrophy of the MTL by normalized MTL volume. Relationships were tested with linear mixed models, to accommodate multiple measures for each participant. Results: We found at most a weak association between cingulate Aβ and MTL volume (added R2 <0.06), primarily for the posterior hippocampus. In neither sample, white matter integrity of the cingulum bundle was associated with cingulate Aβ or MTL volume (added R2 <0.01). Various sensitivity analyses (Aβ-positive individuals only, posterior cingulate SUVR, MTL sub region volume) provided similar results. Conclusion: These findings, consistent in two independent cohorts, do not support our hypothesis that loss of white matter integrity of the cingulum is a connecting factor between cingulate gyrus Aβ deposition and MTL atrophy.
  •  
20.
  • Wisse, Laura E.M., et al. (författare)
  • Hippocampal subfield volumetry from structural isotropic 1 mm3 MRI scans : A note of caution
  • 2021
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 42:2, s. 539-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Spurred by availability of automatic segmentation software, in vivo MRI investigations of human hippocampal subfield volumes have proliferated in the recent years. However, a majority of these studies apply automatic segmentation to MRI scans with approximately 1 × 1 × 1 mm3 resolution, a resolution at which the internal structure of the hippocampus can rarely be visualized. Many of these studies have reported contradictory and often neurobiologically surprising results pertaining to the involvement of hippocampal subfields in normal brain function, aging, and disease. In this commentary, we first outline our concerns regarding the utility and validity of subfield segmentation on 1 × 1 × 1 mm3 MRI for volumetric studies, regardless of how images are segmented (i.e., manually or automatically). This image resolution is generally insufficient for visualizing the internal structure of the hippocampus, particularly the stratum radiatum lacunosum moleculare, which is crucial for valid and reliable subfield segmentation. Second, we discuss the fact that automatic methods that are employed most frequently to obtain hippocampal subfield volumes from 1 × 1 × 1 mm3 MRI have not been validated against manual segmentation on such images. For these reasons, we caution against using volumetric measurements of hippocampal subfields obtained from 1 × 1 × 1 mm3 images.
  •  
21.
  • Wisse, L. E.M., et al. (författare)
  • Pathological drivers of neurodegeneration in suspected non-Alzheimer’s disease pathophysiology
  • 2021
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Little is known about the heterogeneous etiology of suspected non-Alzheimer’s pathophysiology (SNAP), a group of subjects with neurodegeneration in the absence of β-amyloid. Using antemortem MRI and pathological data, we investigated the etiology of SNAP and the association of neurodegenerative pathologies with structural medial temporal lobe (MTL) measures in β-amyloid-negative subjects. Methods: Subjects with antemortem MRI and autopsy data were selected from ADNI (n=63) and the University of Pennsylvania (n=156). Pathological diagnoses and semi-quantitative scores of MTL tau, neuritic plaques, α-synuclein, and TDP-43 pathology and MTL structural MRI measures from antemortem T1-weighted MRI scans were obtained. β-amyloid status (A+/A−) was determined by CERAD score and neurodegeneration status (N+/N−) by hippocampal volume. Results: SNAP reflects a heterogeneous group of pathological diagnoses. In ADNI, SNAP (A−N+) had significantly more neuropathological diagnoses than A+N+. In the A− group, tau pathology was associated with hippocampal, entorhinal cortex, and Brodmann area 35 volume/thickness and TDP-43 pathology with hippocampal volume. Conclusion: SNAP had a heterogeneous profile with more mixed pathologies than A+N+. Moreover, a role for TDP-43 and tau pathology in driving MTL neurodegeneration in the absence of β-amyloid was supported.
  •  
22.
  • Wisse, M., et al. (författare)
  • Laser-assisted cleaning of beryllium-containing mirror samples from JET and PISCES-B
  • 2014
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 89:2, s. 122-130
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of seven polycrystalline mirror samples retrieved from the JET tokamak has been cleaned in vacuum using a pulsed laser system. The surfaces of samples exposed to plasma during 2008-2009 campaigns as part of the second phase of a comprehensive first mirror test contained a mixture of carbon, beryllium and tritium. For this reason, the samples were treated in a vacuum chamber constructed specially for this purpose. In some cases mirrors show an increase of the specular reflectivity after cleaning, though beryllium and carbon deposits were not fully removed. Additionally, three samples coated in PISCES-B with a 110-120 nm beryllium layer were subjected to laser cleaning tests as well.
  •  
23.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.
  •  
24.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • Ingår i: Hippocampus. - 1050-9631.
  • Tidskriftsartikel (refereegranskat)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 μm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 μm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.
  •  
25.
  • Xie, Long, et al. (författare)
  • Baseline structural MRI and plasma biomarkers predict longitudinal structural atrophy and cognitive decline in early Alzheimer’s disease
  • 2023
  • Ingår i: Alzheimer's Research and Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Crucial to the success of clinical trials targeting early Alzheimer’s disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers. Methods: Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into β-amyloid positive/negative (Aβ+/Aβ−)] subgroups. Baseline plasma (p-tau181 and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aβ+/Aβ− subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement. Results: A total of 245 CN (35.0% Aβ+) and 361 MCI (53.2% Aβ+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aβ+ and Aβ− subgroups, including Aβ− CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78–0.93] and more modestly in CN (0.65–0.73). Conclusions: The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aβ− CN indicates the potential use of these biomarkers in predicting a normal age-related decline.
  •  
26.
  • Yushkevich, Paul A., et al. (författare)
  • Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2784-2797
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.
  •  
27.
  • Berron, David, et al. (författare)
  • Early stages of tau pathology and its associations with functional connectivity, atrophy and memory
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2771-2783
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer's disease, post-mortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with Brodmann area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 amyloid-β- cognitively unimpaired, 81 amyloid-β+ cognitively unimpaired and 87 amyloid-β+ individuals with mild cognitive impairment, who each underwent 18F-RO948 tau and 18F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and Brodmann area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, Brodmann area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, Brodmann area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease stage-specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.
  •  
28.
  • Berron, David, et al. (författare)
  • Hippocampal subregional thinning related to tau pathology in early stages of Alzheimer’s disease
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subregions in the medial temporal lobe (MTL) are affected early by Alzheimer’s disease (AD) pathology and subject to grey matter atrophy. Measuring the earliest AD-related atrophy in the hippocampus is challenging as region-of-interest (ROI) analyses of hippocampal subregional volumes collapse across voxels within anatomical subregions. PET imaging studies, however, report accumulation of tau pathology between anatomical subregions in the earliest disease stages (Berron et al., 2021) fitting reports from the neuropathological literature (Lace et al., 2019; Ravikumar et al., 2021). Thus, sensitive in vivo methods of point-wise structural measures are needed in order to detect the earliest hippocampal thinning in AD along the anterior-posterior as well as the medial-lateral hippocampal axis. Method: Here we analyzed data from 76 amyloid-beta negative (Ab-) cognitively normal (CN), 46 Ab+ CN individuals and 25 Ab+ patients with mild cognitive impairment (MCI) from the BioFINDER-2 study, who underwent 7 Tesla T2-weighted structural magnetic resonance imaging, tau positron emission tomography imaging (using 18F-RO-948) and cognitive assessments. First, we segmented hippocampal subfields and extrahippocampal subregions. Second, we calculated point-wise hippocampal thickness estimates (Diers et al.) of hippocampal subfields subiculum, cornu ammonis (CA)1, CA2 and CA3 on the level of the hippocampal body. Thirdly, we extracted local tau-PET SUVR from Area 35 (A35), entorhinal cortex and amygdala. Finally, we assessed relationships between hippocampal local thickness and tau accumulation as well as cognitive performance. Result: Our analyses revealed earliest hippocampal thinning associated with tau accumulation in an area spanning the boundary of subiculum and CA1 at the level of the anterior hippocampal body. Ab+ MCI patients showed more posterior thinning in comparison to Ab- CU participants. Median thickness in an ROI comprising vertices with A35 tau-related thinning (A35-TauThinning-ROI) was significantly lower in MCI Ab+ and tended to be lower in CU Ab+ compared to CU Ab-. Higher median thickness in the hippocampal A35-TauThinning-ROI, but not whole CA1 nor subiculum thickness, was associated with better 10-Word-Delayed-Recall and higher PACC scores. Conclusion: Our results suggest that tau-related thinning of hippocampal subregions can be observed already in early disease stages. Tau-related point-wise thickness measures were more sensitive compared to volumetric measures of anatomical subregions.
  •  
29.
  • de Flores, Robin, et al. (författare)
  • Characterization of hippocampal subfields using ex vivo MRI and histology data : Lessons for in vivo segmentation
  • 2020
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:6, s. 545-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
  •  
30.
  • de Flores, Robin, et al. (författare)
  • Medial Temporal Lobe Networks in Alzheimer's Disease : Structural and Molecular Vulnerabilities
  • 2022
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 42:10, s. 2131-2141
  • Tidskriftsartikel (refereegranskat)abstract
    • The medial temporal lobe (MTL) is connected to the rest of the brain through two main networks: the anterior-temporal (AT) and the posterior-medial (PM) systems. Given the crucial role of the MTL and networks in the physiopathology of Alzheimer's disease (AD), the present study aimed at (1) investigating whether MTL atrophy propagates specifically within the AT and PM networks, and (2) evaluating the vulnerability of these networks to AD proteinopathies. To do that, we used neuroimaging data acquired in human male and female in three distinct cohorts: (1) resting-state functional MRI (rs-fMRI) from the aging brain cohort (ABC) to define the AT and PM networks (n = 68); (2) longitudinal structural MRI from Alzheimer's disease neuroimaging initiative (ADNI)GO/2 to highlight structural covariance patterns (n = 349); and (3) positron emission tomography (PET) data from ADNI3 to evaluate the networks' vulnerability to amyloid and tau (n = 186). Our results suggest that the atrophy of distinct MTL subregions propagates within the AT and PM networks in a dissociable manner. Brodmann area (BA)35 structurally covaried within the AT network while the parahippocampal cortex (PHC) covaried within the PM network. In addition, these networks are differentially associated with relative tau and amyloid burden, with higher tau levels in AT than in PM and higher amyloid levels in PM than in AT. Our results also suggest differences in the relative burden of tau species. The current results provide further support for the notion that two distinct MTL networks display differential alterations in the context of AD. These findings have important implications for disease spread and the cognitive manifestations of AD.SIGNIFICANCE STATEMENT The current study provides further support for the notion that two distinct medial temporal lobe (MTL) networks, i.e., anterior-temporal (AT) and the posterior-medial (PM), display differential alterations in the context of Alzheimer's disease (AD). Importantly, neurodegeneration appears to occur within these networks in a dissociable manner marked by their covariance patterns. In addition, the AT and PM networks are also differentially associated with relative tau and amyloid burden, and perhaps differences in the relative burden of tau species [e.g., neurofibriliary tangles (NFTs) vs tau in neuritic plaques]. These findings, in the context of a growing literature consistent with the present results, have important implications for disease spread and the cognitive manifestations of AD in light of the differential cognitive processes ascribed to them.
  •  
31.
  • Dominguez Perez, Sophia, et al. (författare)
  • Neuropsychological and Neuroanatomical Features of Patients with Behavioral/Dysexecutive Variant Alzheimer's Disease (AD) : A Comparison to Behavioral Variant Frontotemporal Dementia and Amnestic AD Groups
  • 2022
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877. ; 89:2, s. 641-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An understudied variant of Alzheimer's disease (AD), the behavioral/dysexecutive variant of AD (bvAD), is associated with progressive personality, behavior, and/or executive dysfunction and frontal atrophy. Objective: This study characterizes the neuropsychological and neuroanatomical features associated with bvAD by comparing it to behavioral variant frontotemporal dementia (bvFTD), amnestic AD (aAD), and subjects with normal cognition. Methods: Subjects included 16 bvAD, 67 bvFTD, 18 aAD patients, and 26 healthy controls. Neuropsychological assessment and MRI data were compared between these groups. Results: Compared to bvFTD, bvAD showed more significant visuospatial impairments (Rey Figure copy and recall), more irritability (Neuropsychological Inventory), and equivalent verbal memory (Philadelphia Verbal Learning Test). Compared to aAD, bvAD indicated more executive dysfunction (F-letter fluency) and better visuospatial performance. Neuroimaging analysis found that bvAD showed cortical thinning relative to bvFTD posteriorly in left temporal-occipital regions; bvFTD had cortical thinning relative to bvAD in left inferior frontal cortex. bvAD had cortical thinning relative to aAD in prefrontal and anterior temporal regions. All patient groups had lower volumes than controls in both anterior and posterior hippocampus. However, bvAD patients had higher average volume than aAD patients in posterior hippocampus and higher volume than bvFTD patients in anterior hippocampus after adjustment for age and intracranial volume. Conclusion: Findings demonstrated that underlying pathology mediates disease presentation in bvAD and bvFTD.
  •  
32.
  • Dong, Mengjin, et al. (författare)
  • DeepAtrophy : Teaching a neural network to detect progressive changes in longitudinal MRI of the hippocampal region in Alzheimer's disease
  • 2021
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 243
  • Tidskriftsartikel (refereegranskat)abstract
    • Measures of change in hippocampal volume derived from longitudinal MRI are a well-studied biomarker of disease progression in Alzheimer's disease (AD) and are used in clinical trials to track therapeutic efficacy of disease-modifying treatments. However, longitudinal MRI change measures based on deformable registration can be confounded by MRI artifacts, resulting in over-estimation or underestimation of hippocampal atrophy. For example, the deformation-based-morphometry method ALOHA (Das et al., 2012) finds an increase in hippocampal volume in a substantial proportion of longitudinal scan pairs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, unexpected, given that the hippocampal gray matter is lost with age and disease progression. We propose an alternative approach to quantify disease progression in the hippocampal region: to train a deep learning network (called DeepAtrophy) to infer temporal information from longitudinal scan pairs. The underlying assumption is that by learning to derive time-related information from scan pairs, the network implicitly learns to detect progressive changes that are related to aging and disease progression. Our network is trained using two categorical loss functions: one that measures the network's ability to correctly order two scans from the same subject, input in arbitrary order; and another that measures the ability to correctly infer the ratio of inter-scan intervals between two pairs of same-subject input scans. When applied to longitudinal MRI scan pairs from subjects unseen during training, DeepAtrophy achieves greater accuracy in scan temporal ordering and interscan interval inference tasks than ALOHA (88.5% vs. 75.5% and 81.1% vs. 75.0%, respectively). A scalar measure of time-related change in a subject level derived from DeepAtrophy is then examined as a biomarker of disease progression in the context of AD clinical trials. We find that this measure performs on par with ALOHA in discriminating groups of individuals at different stages of the AD continuum. Overall, our results suggest that using deep learning to infer temporal information from longitudinal MRI of the hippocampal region has good potential as a biomarker of disease progression, and hints that combining this approach with conventional deformation-based morphometry algorithms may lead to improved biomarkers in the future.
  •  
33.
  • Groot, Colin, et al. (författare)
  • A biomarker profile of elevated CSF p-tau with normal tau PET is associated with increased tau accumulation rates on PET in early Alzheimer’s disease
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Different tau biomarkers become abnormal at different stages of Alzheimer’s disease (AD), with CSF p-tau typically being elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we selected a group of amyloid-β-positive (A+) individuals with elevated CSF p-tau levels but negative tau-PET scans and assessed longitudinal changes in tau-PET, cortical thickness and cognitive decline. Method: Individuals without dementia (i.e., cognitively unimpaired (CU) or mild cognitive impairment, n=231) were selected from the BioFINDER-2 study. These subjects were categorized into biomarker groups based on Gaussian mixture modelling to determine cut-offs for abnormal CSF Aβ42/40 (A; <0.078), CSF p-tau217 (P; >110 pg/ml) and [18F]RO948 tau-PET SUVR within a temporal meta-ROI (T; SUVR >1.40). Resulting groups were: A+P-T- (concordant, n=30), A+P+T- (discordant, n=48) and A+P+T+ (concordant, n=18). We additionally used 135 A- CU individuals (A- CU) as a reference group (Tables 1 and 2). Differences in annual change in regional tau-PET SUVR, cortical thickness and cognition between the A+P+T- group and the other groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures) education. Result: Longitudinal change in tau-PET was faster in the A+P+T- group than in the A- CU and A+P-T- groups across medial temporal and neocortical regions, with the medial temporal increases being more pronounced. The A+P+T- group showed slower rate of increases in tau-PET compared to the A+P+T+ group, primarily in neocortical regions (Figures 1 and 2). We did not detect differences in yearly change in cortical thickness (Figure 3) or in cognitive decline (Figure 3) between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Conclusion: These findings suggest that the A+P+T- biomarker profile is associated with early tau accumulation, and with relative sparing of cortical thinning and cognitive decline compared to A+P+T+ individuals. Therefore, the A+P+T- group represents an interesting target-group for early anti-tau interventions and for examining the emergence of tau aggregates in early AD.
  •  
34.
  • Groot, Colin, et al. (författare)
  • Phospho-tau with subthreshold tau-PET predicts increased tau accumulation rates in amyloid-positive individuals
  • 2023
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 146:4, s. 1580-1591
  • Tidskriftsartikel (refereegranskat)abstract
    • Different tau biomarkers become abnormal at different stages of Alzheimer's disease, with CSF phospho-tau typically becoming elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we implemented an observational study design to examine longitudinal changes in Tau-PET, cortical thickness and cognitive decline in amyloid-β-positive (A+) individuals with elevated CSF P-tau levels (P+) but subthreshold Tau-PET retention (T-). To this end, individuals without dementia (i.e., cognitively unimpaired or mild cognitive impairment, N = 231) were selected from the BioFINDER-2 study. Amyloid-β-positive (A+) individuals were categorized into biomarker groups based on cut-offs for abnormal CSF P-tau217 and [18F]RO948 (Tau) PET, yielding groups of tau-concordant-negative (A + P-T-; n = 30), tau-discordant (i.e., A + P+T-; n = 48) and tau-concordant-positive (A + P+T+; n = 18) individuals. In addition, 135 amyloid-β-negative, tau-negative, cognitively unimpaired individuals served as controls. Differences in annual change in regional Tau-PET, cortical thickness and cognition between the groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures only) education. Mean follow-up time was ∼2 years. Longitudinal increase in Tau-PET was faster in the A + P+T- group than in the control and A + P-T- groups across medial temporal and neocortical regions, with the highest accumulation rates in the medial temporal lobe. The A + P+T- group showed a slower rate of increases in tau-PET compared to the A + P+T+ group, primarily in neocortical regions. We did not detect differences in yearly change in cortical thickness or in cognitive decline between the A + P+T- and A + P-T- groups. The A + P+T+ group, however, showed faster cognitive decline compared to all other groups. Altogether, these findings suggest that the A + P+T- biomarker profile in persons without dementia is associated with an isolated effect on increased Tau-PET accumulation rates but not on cortical thinning and cognitive decline. While this suggests that the tau-discordant biomarker profile is not strongly associated with short-term clinical decline, this group does represent an interesting population for monitoring effects of interventions with disease modifying agents on tau accumulation in early Alzheimer's disease, and for examining the emergence of tau aggregates in Alzheimer's disease. Further, we suggest to update the AT(N) criteria for Alzheimer's disease biomarker classification to APT(N).
  •  
35.
  • Hrybouski, Stanislau, et al. (författare)
  • Aging and Alzheimer's disease have dissociable effects on local and regional medial temporal lobe connectivity
  • 2023
  • Ingår i: Brain Communications. - 2632-1297. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.
  •  
36.
  • Insausti, Ricardo, et al. (författare)
  • Ex vivo, in situ perfusion protocol for human brain fixation compatible with microscopy, MRI techniques, and anatomical studies
  • 2023
  • Ingår i: Frontiers in Neuroanatomy. - : Frontiers Media SA. - 1662-5129. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor’s body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.
  •  
37.
  • McCollum, Lauren E., et al. (författare)
  • Oh brother, where art tau? Amyloid, neurodegeneration, and cognitive decline without elevated tau
  • 2021
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Mild cognitive impairment (MCI) can be an early manifestation of Alzheimer's disease (AD) pathology, other pathologic entities [e.g., cerebrovascular disease, Lewy body disease, LATE (limbic-predominant age-related TDP-43 encephalopathy)], or mixed pathologies, with concomitant AD- and non-AD pathology being particularly common, albeit difficult to identify, in living MCI patients. The National Institute on Aging and Alzheimer's Association (NIA-AA) A/T/(N) [β-Amyloid/Tau/(Neurodegeneration)] AD research framework, which classifies research participants according to three binary biomarkers [β-amyloid (A+/A-), tau (T+/T-), and neurodegeneration (N+/N-)], provides an indirect means of identifying such cases. Individuals with A+T-(N+) MCI are thought to have both AD pathologic change, given the presence of β-amyloid, and non-AD pathophysiology, given neurodegeneration without tau, because in typical AD it is tau accumulation that is most tightly linked to neuronal injury and cognitive decline. Thus, in A+T-(N+) MCI (hereafter referred to as “mismatch MCI” for the tau-neurodegeneration mismatch), non-AD pathology is hypothesized to drive neurodegeneration and symptoms, because β-amyloid, in the absence of tau, likely reflects a preclinical stage of AD. We compared a group of individuals with mismatch MCI to groups with A+T+(N+) MCI (or “prodromal AD”) and A-T-(N+) MCI (or “neurodegeneration-only MCI”) on cross-sectional and longitudinal cognition and neuroimaging characteristics. β-amyloid and tau status were determined by CSF assays, while neurodegeneration status was based on hippocampal volume on MRI. Overall, mismatch MCI was less “AD-like” than prodromal AD and generally, with some exceptions, more closely resembled the neurodegeneration-only group. At baseline, mismatch MCI had less episodic memory loss compared to prodromal AD. Longitudinally, mismatch MCI declined more slowly than prodromal AD across all included cognitive domains, while mismatch MCI and neurodegeneration-only MCI declined at comparable rates. Prodromal AD had smaller baseline posterior hippocampal volume than mismatch MCI, and whole brain analyses demonstrated cortical thinning that was widespread in prodromal AD but largely restricted to the medial temporal lobes (MTLs) for the mismatch and neurodegeneration-only MCI groups. Longitudinally, mismatch MCI had slower rates of volume loss than prodromal AD throughout the MTLs. Differences in cross-sectional and longitudinal cognitive and neuroimaging measures between mismatch MCI and prodromal AD may reflect disparate underlying pathologic processes, with the mismatch group potentially being driven by non-AD pathologies on a background of largely preclinical AD. These findings suggest that β-amyloid status alone in MCI may not reveal the underlying driver of symptoms with important implications for enrollment in clinical trials and prognosis.
  •  
38.
  • Olsen, Rosanna K., et al. (författare)
  • Progress update from the hippocampal subfields group
  • 2019
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 11, s. 439-449
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Heterogeneity of segmentation protocols for medial temporal lobe regions and hippocampal subfields on in vivo magnetic resonance imaging hinders the ability to integrate findings across studies. We aim to develop a harmonized protocol based on expert consensus and histological evidence.METHODS: Our international working group, funded by the EU Joint Programme-Neurodegenerative Disease Research (JPND), is working toward the production of a reliable, validated, harmonized protocol for segmentation of medial temporal lobe regions. The working group uses a novel postmortem data set and online consensus procedures to ensure validity and facilitate adoption.RESULTS: This progress report describes the initial results and milestones that we have achieved to date, including the development of a draft protocol and results from the initial reliability tests and consensus procedures.DISCUSSION: A harmonized protocol will enable the standardization of segmentation methods across laboratories interested in medial temporal lobe research worldwide.
  •  
39.
  • Ravikumar, Sadhana, et al. (författare)
  • Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer’s Disease Pathology Using Ex vivo Imaging
  • 2021
  • Ingår i: Machine Learning in Clinical Neuroimaging - 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Proceedings. - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783030875855 ; 13001 LNCS, s. 3-12
  • Konferensbidrag (refereegranskat)abstract
    • Neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s Disease (AD). In this work, we investigate the relationship between MTL morphometry features derived from high-resolution ex vivo imaging and histology-based measures of NFT pathology using a topological unfolding framework applied to a dataset of 18 human postmortem MTL specimens. The MTL has a complex 3D topography and exhibits a high degree of inter-subject variability in cortical folding patterns which poses a significant challenge for volumetric registration methods typically used during MRI template construction. By unfolding the MTL cortex, the proposed framework explicitly accounts for the sheet-like geometry of the MTL cortex and provides a two-dimensional reference coordinate space which can be used to implicitly register cortical folding patterns across specimens based on distance along the cortex despite large anatomical variability. Leveraging this framework in a subset of 15 specimens, we characterize the associations between NFTs and morphological features such as cortical thickness and surface curvature and identify regions in the MTL where patterns of atrophy are strongly correlated with NFT pathology.
  •  
40.
  • Roh, Hyung S., et al. (författare)
  • Integrating Color Deconvolution Thresholding and Weakly Supervised Learning for Automated Segmentation of Neurofibrillary Tangle and Neuropil Threads
  • 2023
  • Ingår i: Medical Imaging 2023 : Digital and Computational Pathology - Digital and Computational Pathology. - 1605-7422. - 9781510660472 ; 12471
  • Konferensbidrag (refereegranskat)abstract
    • Abnormally phosphorylated tau proteins are known to be a major indicator of Alzheimer's Disease (AD) with strong association with memory loss and cognitive decline. Automated generation of pixel-wise accurate neurofibrillary tangles (NFTs) and neuropil threads (NTs) segmentation is a challenging task, due to lack of ground truth segmentation data of these abnormal tau pathology. This problem is most prominent in the case of segmenting NTs, where the small threadlike morphology makes pixel-wise labeling a laborious task and unrealistic for large-scale studies. Lack of ground truth data poses a significant limitation for many learning-based methods to generate accurate segmentations of NFTs and NTs. This work presents an automated pipeline for pixel level segmentation of NFTs and NTs that does not rely on ground truth segmentation data. The pipeline is composed of four main steps: (1) color deconvolution is used to separate histopathology images into staining channels (DAB, Hematoxylin, and Eosin), (2) Otsu's thresholding is used on the DAB stain channel to generate pixel level segmentation of abnormal tau proteins staining, (3) a weakly-supervised learning paradigm (WildCat), using only global descriptors of images, is used to generate density maps of potential regions of NFTs and NTs, and (4) density maps and segmentations are then integrated using connected component analysis to localize NFTs and NTs in the detected tau segmentations. Our results show high global classification accuracy for NFTs (Acc:0.96) and NTs (Acc:0.91), and statistically significant distinctions when evaluating the percent area occupied of the detected NTs relative to expert ratings of NTs severity. Qualitative assessment of the NFTs and NTs results showed accurate pixel-level segmentations of the NFTs, while modest performance for NTs.
  •  
41.
  • Wisse, Laura E.M., et al. (författare)
  • Cross-sectional and longitudinal medial temporal lobe subregional atrophy patterns in semantic variant primary progressive aphasia
  • 2021
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 98, s. 231-241
  • Tidskriftsartikel (refereegranskat)abstract
    • T1-magnetic resonance imaging (MRI) studies report early atrophy in the left anterior temporal lobe, especially the perirhinal cortex, in semantic variant primary progressive aphasia (svPPA). Improved segmentation protocols using high-resolution T2-MRI have enabled fine-grained medial temporal lobe (MTL) subregional measurements, which may provide novel information on the atrophy pattern and disease progression in svPPA. We aimed to investigate the MTL subregional atrophy pattern cross-sectionally and longitudinally in patients with svPPA as compared with controls and patients with Alzheimer's disease (AD). MTL subregional volumes were obtained using the Automated Segmentation for Hippocampal Subfields software from high-resolution T2-MRIs in 15 svPPA, 37 AD, and 23 healthy controls. All MTL volumes were corrected for intracranial volume and parahippocampal cortices for slice number. Longitudinal atrophy rates of all subregions were obtained using an unbiased deformation-based morphometry pipeline in 6 svPPA patients, 9 controls, and 12 AD patients. Cross-sectionally, significant volume loss was observed in svPPA compared with controls in the left MTL, right cornu ammonis 1 (CA1), Brodmann area (BA)35, and BA36 (subdivisions of the perirhinal cortex). Compared with AD patients, svPPA patients had significantly smaller left CA1, BA35, and left and right BA36 volumes. Longitudinally, svPPA patients had significantly greater atrophy rates of left and right BA36 than controls but not relative to AD patients. Fine-grained analysis of MTL atrophy patterns provides information about the evolution of atrophy in svPPA. These results indicate that MTL subregional measures might be useful markers to track disease progression or for clinical trials in svPPA.
  •  
42.
  • Wuestefeld, Anika, et al. (författare)
  • Age-related and amyloid-beta-independent tau deposition and its downstream effects
  • 2023
  • Ingår i: Brain : a journal of neurology. - 1460-2156. ; 146:8, s. 3192-3205
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-β (Aβ) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe. However, there is evidence that, independently of Aβ, age-related tau pathology might be present outside of the medial temporal lobe. We therefore aimed to study age-related Aβ-independent tau deposition outside the medial temporal lobe in two large cohorts and to investigate potential downstream effects of this on cognition and structural measures. We included 545 cognitively unimpaired adults (40-92 years) from the BioFINDER-2 study (in vivo) and 639 (64-108 years) from the Rush Alzheimer's Disease Center cohorts (ex vivo). 18F-RO948- and 18F-flutemetamol-PET standardized uptake value ratios were calculated for regional tau and global/regional Aβ in vivo. Immunohistochemistry was used to estimate Aβ load and tangle density ex vivo. In vivo medial temporal lobe volumes (subiculum, cornu ammonis 1) and cortical thickness (entorhinal cortex, Brodmann area 35) were obtained using Automated Segmentation for Hippocampal Subfields packages. Thickness of early and late neocortical Alzheimer's disease regions was determined using FreeSurfer. Global cognition and episodic memory were estimated to quantify cognitive functioning. In vivo age-related tau deposition was observed in the medial temporal lobe and in frontal and parietal cortical regions, which was statistically significant when adjusting for Aβ. This was also observed in individuals with low Aβ load. Tau deposition was negatively associated with cortical volumes and thickness in temporal and parietal regions independently of Aβ. The associations between age and cortical volume or thickness were partially mediated via tau in regions with early Alzheimer's disease pathology, i.e. early tau and/or Aβ pathology (subiculum/Brodmann area 35/precuneus/posterior cingulate). Finally, the associations between age and cognition were partially mediated via tau in Brodmann area 35, even when including Aβ-PET as covariate. Results were validated in the ex vivo cohort showing age-related and Aβ-independent increases in tau aggregates in and outside the medial temporal lobe. Ex vivo age-cognition associations were mediated by medial and inferior temporal tau tangle density, while correcting for Aβ density. Taken together, our study provides support for primary age-related tauopathy even outside the medial temporal lobe in vivo and ex vivo, with downstream effects on structure and cognition. These results have implications for our understanding of the spreading of tau outside the medial temporal lobe, also in the context of Alzheimer's disease. Moreover, this study suggests the potential utility of tau-targeting treatments in primary age-related tauopathy, likely already in preclinical stages in individuals with low Aβ pathology.
  •  
43.
  • Wuestefeld, Anika, et al. (författare)
  • Age-related tau-PET uptake and its downstream effects extend beyond the medial temporal lobe in cognitively normal older adults
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Amyloid-beta (Aβ) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe (MTL). However, there is evidence that age-related Aβ-independent tau pathology is present outside the MTL (Kaufman et al., Acta Neuropathol, 2018). We examine tau deposition determined by positron emission tomography (PET) in regions typically involved earlier/later in AD and downstream effects on neurodegeneration and cognition in cognitively unimpaired older adults and a low-Aβ subgroup. Methods: We included 488 adults (40-91 years; low-Aβ: n=355, 65.2±11.5 years) from the BioFINDER-2 study. MTL volumes (dentate gyrus, subiculum (SUB), cornu ammonis 1) and thickness (entorhinal cortex, Brodmann areas (BA)35/36, and parahippocampal cortex) were obtained, using Automated Segmentation for Hippocampal Subfields packages for T1- and T2-weighted magnetic resonance images. Thickness of early/late neocortical AD-regions (anterior cingulate, precuneus/posterior cingulate (PPC), orbitofrontal, inferior parietal cortex; and middle frontal, lateral occipital, and precentral/postcentral gyrus) was determined using FreeSurfer. [18F]RO948- and [18F]flutemetamol-PET standardized uptake value ratios (SUVRs) were calculated for local tau and global/local Aβ. Aβ status was determined using Aβ-PET or cerebrospinal fluid Aβ-42/40 ratio. Global cognition was measured using delayed word-list recall, trail making test B, and animal fluency. Results: Increasing age was associated with higher tau-PET SUVRs primarily in MTL/frontal/parietal regions. A significant association between age and local tau-PET remained even when including Aβ-PET as a mediator (Fig. 1). Age and local tau-PET, but not Aβ-PET, where negatively associated with structure in most examined regions (Figs. 2-3). Age-structure associations were serially mediated via tau-PET in regions with early AD pathology (SUB/BA35/PPC). Also, in the low-Aβ subgroup, tau-PET mediated the age-structure (SUB/BA35/PPC) associations (Fig. 3D). Finally, the age-global cognition relationship was serially mediated via MTL tau-PET and subiculum volume, even when including global Aβ-PET as additional mediator (Fig. 4). Conclusion: We observe partially Aβ-independent associations between age and tau-PET signal across the neocortex. Interestingly, partially Aβ-independent tau-PET signal appears to mediate the age-structure associations in and outside the MTL (PPC), also in the low-Aβ group, and the age-MTL structure-cognition associations. This potentially provides in vivo support for Primary Age-related Tauopathy downstream effects on structure, beyond the MTL, and cognition.
  •  
44.
  • Xie, Long, et al. (författare)
  • Deep Label Fusion : A 3D End-To-End Hybrid Multi-atlas Segmentation and Deep Learning Pipeline
  • 2021
  • Ingår i: Information Processing in Medical Imaging - 27th International Conference, IPMI 2021, Proceedings. - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783030781903 ; 12729 LNCS, s. 428-439
  • Konferensbidrag (refereegranskat)abstract
    • Deep learning (DL) is the state-of-the-art methodology in various medical image segmentation tasks. However, it requires relatively large amounts of manually labeled training data, which may be infeasible to generate in some applications. In addition, DL methods have relatively poor generalizability to out-of-sample data. Multi-atlas segmentation (MAS), on the other hand, has promising performance using limited amounts of training data and good generalizability. A hybrid method that integrates the high accuracy of DL and good generalizability of MAS is highly desired and could play an important role in segmentation problems where manually labeled data is hard to generate. Most of the prior work focuses on improving single components of MAS using DL rather than directly optimizing the final segmentation accuracy via an end-to-end pipeline. Only one study explored this idea in binary segmentation of 2D images, but it remains unknown whether it generalizes well to multi-class 3D segmentation problems. In this study, we propose a 3D end-to-end hybrid pipeline, named deep label fusion (DLF), that takes advantage of the strengths of MAS and DL. Experimental results demonstrate that DLF yields significant improvements over conventional label fusion methods and U-Net, a direct DL approach, in the context of segmenting medial temporal lobe subregions using 3T T1-weighted and T2-weighted MRI. Further, when applied to an unseen similar dataset acquired in 7T, DLF maintains its superior performance, which demonstrates its good generalizability.
  •  
45.
  • Xie, Long, et al. (författare)
  • Deep label fusion : A generalizable hybrid multi-atlas and deep convolutional neural network for medical image segmentation
  • 2023
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convolutional neural networks (DCNN) achieve very high accuracy in segmenting various anatomical structures in medical images but often suffer from relatively poor generalizability. Multi-atlas segmentation (MAS), while less accurate than DCNN in many applications, tends to generalize well to unseen datasets with different characteristics from the training dataset. Several groups have attempted to integrate the power of DCNN to learn complex data representations and the robustness of MAS to changes in image characteristics. However, these studies primarily focused on replacing individual components of MAS with DCNN models and reported marginal improvements in accuracy. In this study we describe and evaluate a 3D end-to-end hybrid MAS and DCNN segmentation pipeline, called Deep Label Fusion (DLF). The DLF pipeline consists of two main components with learnable weights, including a weighted voting subnet that mimics the MAS algorithm and a fine-tuning subnet that corrects residual segmentation errors to improve final segmentation accuracy. We evaluate DLF on five datasets that represent a diversity of anatomical structures (medial temporal lobe subregions and lumbar vertebrae) and imaging modalities (multi-modality, multi-field-strength MRI and Computational Tomography). These experiments show that DLF achieves comparable segmentation accuracy to nnU-Net (Isensee et al., 2020), the state-of-the-art DCNN pipeline, when evaluated on a dataset with similar characteristics to the training datasets, while outperforming nnU-Net on tasks that involve generalization to datasets with different characteristics (different MRI field strength or different patient population). DLF is also shown to consistently improve upon conventional MAS methods. In addition, a modality augmentation strategy tailored for multimodal imaging is proposed and demonstrated to be beneficial in improving the segmentation accuracy of learning-based methods, including DLF and DCNN, in missing data scenarios in test time as well as increasing the interpretability of the contribution of each individual modality.
  •  
46.
  • Xie, Long, et al. (författare)
  • Longitudinal atrophy in early Braak regions in preclinical Alzheimer's disease
  • 2020
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 41:16, s. 4704-4717
  • Tidskriftsartikel (refereegranskat)abstract
    • A major focus of Alzheimer's disease (AD) research has been finding sensitive outcome measures to disease progression in preclinical AD, as intervention studies begin to target this population. We hypothesize that tailored measures of longitudinal change of the medial temporal lobe (MTL) subregions (the sites of earliest cortical tangle pathology) are more sensitive to disease progression in preclinical AD compared to standard cognitive and plasma NfL measures. Longitudinal T1-weighted MRI of 337 participants were included, divided into amyloid-β negative (Aβ−) controls, cerebral spinal fluid p-tau positive (T+) and negative (T−) preclinical AD (Aβ+ controls), and early prodromal AD. Anterior/posterior hippocampus, entorhinal cortex, Brodmann areas (BA) 35 and 36, and parahippocampal cortex were segmented in baseline MRI using a novel pipeline. Unbiased change rates of subregions were estimated using MRI scans within a 2-year-follow-up period. Experimental results showed that longitudinal atrophy rates of all MTL subregions were significantly higher for T+ preclinical AD and early prodromal AD than controls, but not for T− preclinical AD. Posterior hippocampus and BA35 demonstrated the largest group differences among hippocampus and MTL cortex respectively. None of the cross-sectional MTL measures, longitudinal cognitive measures (PACC, ADAS-Cog) and cross-sectional or longitudinal plasma NfL reached significance in preclinical AD. In conclusion, longitudinal atrophy measurements reflect active neurodegeneration and thus are more directly linked to active disease progression than cross-sectional measurements. Moreover, accelerated atrophy in preclinical AD seems to occur only in the presence of concomitant tau pathology. The proposed longitudinal measurements may serve as efficient outcome measures in clinical trials.
  •  
47.
  • Xie, Long, et al. (författare)
  • Tau burden is associated with cross-sectional and longitudinal neurodegeneration in the medial temporal lobe in cognitively normal individuals
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurofibrillary tangle pathology is thought to drive neurodegeneration in beta-amyloid positive (A+) cognitively normal (CN) individuals, i.e., preclinical Alzheimer’s disease (AD).However, in beta-amyloid negative (A-) CN, the contribution of tau pathology [primary age-related tauopathy (PART)] to neurodegeneration remains uncertain. We investigate the correlation between tau burden measured by PET in the medial temporal lobe (MTL) and MRI-derived cross-sectional and longitudinal structural atrophy in these cohorts. Methods: 420 CN (A-/A+: 294/101, Table 1) individuals from ADNI with AV1451 PET and T1-weighted MRI acquired within one year were included. Bilateral anterior/posterior hippocampal volume and thickness of entorhinal cortex (ERC), Brodmann areas 35/36 (BA35/BA36) and parahipocampal cortex (PHC) were obtained from baseline MRI scans. Bilateral MTL tau burden was computed as AV1451 uptake across ERC and BA35. Beta-amyloid status was determined with PET by standard cut-offs (Florbetapir: 1.11; Florbetaben: 1.08). In a subset of participants with prospective longitudinal MRI scans (up to 4.5 years), annualized volume change rate of each MTL subregion was estimated. Intracranial volume and MRI follow-up time were additional covariates for cross-sectional and longitudinal analysis respectively. We performed the analysis separately for each hemisphere in the whole CN cohort and its A+ and A- subgroups. Results: Tau burden was significantly associated with cross-sectional left BA35/36 thickness in the whole cohort and bilateral volume in both A+ CN and the whole cohort (Table 2, Figure 1), but not in in A- CN. Stronger correlations between MTL tau burden and longitudinal atrophy, despite smaller sample size, was observed in almost all the MTL subregions regardless of amyloid status (Table 3, Figure 1). In general, effects from the left hemisphere were stronger than those from the right hemisphere. All significant correlations were maintained when corrected for beta-amyloid PET SUVR. Conclusions: The results demonstrated that elevated tau predicts subsequent neurodegeneration in early Braak regions in CN subjects regardless of amyloid status. This indicates that PART may be an important driver of neurodegeneration already during normal ageing in cognitively normal individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-47 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy