SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Witasp E) "

Sökning: WFRF:(Witasp E)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Sanmun, D, et al. (författare)
  • Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: implications for chronic granulomatous disease
  • 2009
  • Ingår i: American journal of physiology. Cell physiology. - : American Physiological Society. - 1522-1563 .- 0363-6143. ; 297:3, s. C621-C631
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolution of inflammation requires clearance of activated neutrophils by macrophages in a manner that prevents injury to adjacent tissues. Surface changes, including phosphatidylserine (PS) exposure, may target neutrophils for phagocytosis. In this study, we show that externalization of PS is defective in phorbol myristate acetate (PMA)-activated neutrophils obtained from chronic granulomatous disease (CGD) patients with mutations in components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Moreover, activated neutrophils from CGD patients failed to undergo clearance upon cocultivation with macrophages from normal donors. In line with these results, treatment of donor neutrophils with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked PMA-induced PS oxidation and externalization and prevented their engulfment by macrophages. Furthermore, primary macrophages from CGD patients or human gp91phox-deficient PLB-985 cells differentiated into macrophage-like cells were defective for engulfment of apoptotic target cells. Pretreatment of normal macrophages with DPI also suppressed the subsequent ingestion of PS-positive target cells. Together, these data demonstrate that NADPH oxidase plays an important role in the process of macrophage disposal of target cells (programmed cell clearance). Thus we speculate that the lack of a functional NADPH oxidase results in impaired neutrophil clearance and the exaggerated inflammation that is characteristic for CGD.
  •  
6.
  •  
7.
  •  
8.
  • Skenteris, Nikolaos T, et al. (författare)
  • Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification
  • 2022
  • Ingår i: Clinical and Translational Medicine. - : Wiley. - 2001-1326. ; 12:2, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: Vascular calcification is a prominent feature of late-stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context.METHODS AND RESULTS: In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α-SMA+ cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE-/- mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFβ1, phosphate and β-glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues.CONCLUSION: We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α-SMA+ regions of calcified cardiovascular tissues, induced by pro-inflammatory and pro-osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Witasp, Erika, et al. (författare)
  • Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells
  • 2009
  • Ingår i: Toxicology and Applied Pharmacology. - : Elsevier BV. - 0041-008X .- 1096-0333. ; 239:3, s. 306-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Macrophage recognition and ingestion of apoptotic cell corpses, a process referred to as programmed cell clearance, is of considerable importance for the maintenance of tissue homeostasis and in the resolution of inflammation. Moreover, macrophages are the first line of defense against microorganisms and other foreign materials including particles. However, there is sparse information on the mode of uptake of engineered nanomaterials by primary macrophages. In this study, mesoporous silica particles with cubic pore geometries and covalently fluorescein-grafted particles were synthesized through a novel route, and their interactions with primary human monocyte-derived macrophages were assessed. Efficient and active internalization of mesoporous silica particles of different sizes was observed by transmission electron microscopic and flow cytometric analysis and studies using pharmacological inhibitors suggested that uptake occurred through a process of endocytosis. Moreover, uptake of silica particles was independent of serum factors. The silica particles with very high surface areas due to their porous structure did not impair cell viability or function of macrophages, including the ingestion of different classes of apoptotic or opsonized target cells. The current findings are relevant to the development of mesoporous materials for drug delivery and other biomedical applications.
  •  
13.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy