SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wolf Watz M) "

Sökning: WFRF:(Wolf Watz M)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Wolf-Watz, M, et al. (författare)
  • Solution properties of the free and DNA-bound Runt domain of AML1.
  • 1999
  • Ingår i: European Journal of Biochemistry. - 0014-2956 .- 1432-1033. ; 261:1, s. 251-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The Runt domain is responsible for specific DNA and protein-protein interactions in a family of transcription factors which includes human AML1. Structural data on the Runt domain has not yet become available, possibly due to solubility and stability problems with expressed protein fragments. Here we describe the optimization and characterization of a 140-residue fragment, containing the Runt domain of AML1, which is suitable for structural studies. The fragment of AML1 including amino acids 46-185 [AML1 Dm(46-185)] contains a double cysteine-->serine mutation which does not affect Runt domain structure or DNA-binding affinity. Purified AML1 Dm(46-185) is soluble and optimally stable in a buffer containing 200 mm MgSO4 and 20 mm sodium phosphate at pH 6.0. Nuclear magnetic resonance and circular dichroism spectroscopy indicate that the Runt domain contains beta-sheet, but little or no alpha-helical secondary structure elements. The 45 N-terminal residues of AML1 are unstructured and removal of the N-terminal enhances sequence-specific DNA binding. The NMR spectrum of AML1 Dm(46-185) displays a favorable chemical shift dispersion and resolved NOE connectivities are readily identified, suggesting that a structure determination of this Runt domain fragment is feasible. A titration of 15N-labelled AML1 Dm(46-185) with a 14-bp cognate DNA duplex results in changes in the 15N NMR heteronuclear single quantum coherence spectrum which indicate the formation of a specific complex and structural changes in the Runt domain upon DNA binding.
  •  
4.
  • Andersson, K, et al. (författare)
  • YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis.
  • 1996
  • Ingår i: Molecular Microbiology. - 0950-382X .- 1365-2958. ; 20:5, s. 1057-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The PTPase YopH of Yersinia is essential to the ability of these bacteria to block phagocytosis. Wild-type Yersinia pseudotuberculosis, but not the yopH mutant strain, resisted phagocytosis by J774 cells. Ingestion of a yopH mutant was dependent on tyrosine kinase activity. Transcomplementation with wild-type yopH restored the anti-phagocytic effect, whereas introduction of the gene encoding the catalytically inactive yopHC403A was without effect. The PTPase inhibitor orthovanadate impaired the anti-phagocytic effect of the wild-type strain, further demonstrating the importance of bacteria-derived PTPase activity for this event. The ability to resist phagocytosis indicates that the effect of the bacterium is immediately exerted when it becomes associated with the phagocyte. Within 30 s after the onset of infection, wild-type Y. pseudotuberculosis caused a YopH-dependent dephosphorylation of phosphotyrosine proteins in J774 cells. Furthermore, interaction of the cells with phagocytosable strains led to a rapid and transient increase in tyrosine phosphorylation of paxillin and some other proteins, an event dependent on the presence of the bacterial surface-located protein invasin. Co-infection with the phagocytosable strain and the wild-type strain abolished the induction of tyrosine phosphorylation. Taken together, the present findings demonstrate an immediate YopH-mediated dephosphorylation of macrophage phosphotyrosine proteins, suggesting that this PTPase acts by preventing early phagocytosis-linked signalling in the phagocyte.
  •  
5.
  •  
6.
  • Eisenmesser, Elan Z, et al. (författare)
  • Intrinsic dynamics of an enzyme underlies catalysis
  • 2005
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 438, s. 117-21
  • Tidskriftsartikel (refereegranskat)abstract
    • A unique feature of chemical catalysis mediated by enzymes is that the catalytically reactive atoms are embedded within a folded protein. Although current understanding of enzyme function has been focused on the chemical reactions and static three-dimensional structures, the dynamic nature of proteins has been proposed to have a function in catalysis1, 2, 3, 4, 5. The concept of conformational substates has been described6; however, the challenge is to unravel the intimate linkage between protein flexibility and enzymatic function. Here we show that the intrinsic plasticity of the protein is a key characteristic of catalysis. The dynamics of the prolyl cis–trans isomerase cyclophilin A (CypA) in its substrate-free state and during catalysis were characterized with NMR relaxation experiments. The characteristic enzyme motions detected during catalysis are already present in the free enzyme with frequencies corresponding to the catalytic turnover rates. This correlation suggests that the protein motions necessary for catalysis are an intrinsic property of the enzyme and may even limit the overall turnover rate. Motion is localized not only to the active site but also to a wider dynamic network. Whereas coupled networks in proteins have been proposed previously3, 7, 8, 9, 10, we experimentally measured the collective nature of motions with the use of mutant forms of CypA. We propose that the pre-existence of collective dynamics in enzymes before catalysis is a common feature of biocatalysts and that proteins have evolved under synergistic pressure between structure and dynamics.
  •  
7.
  • Henriksson, M L, et al. (författare)
  • Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras
  • 2000
  • Ingår i: Biochemical Journal. - : Portland Press. - 0264-6021 .- 1470-8728. ; 347:1, s. 217-222
  • Tidskriftsartikel (refereegranskat)abstract
    • We have examined the functional consequences of ADP-ribosyltransferase modification of Ras by the exoenzyme S (ExoS) protein of Pseudomonas aeruginosa. ExoS has been shown previously to ADP-ribosylate a number of proteins, including members of the Ras superfamily, which play an essential role in the processes of cell proliferation, differentiation, motility and cell division. HeLa and NIH3T3 cells were infected with ExoS protein, which was delivered via the type III secretion system of the heterologous host Yersinia pseudotuberculosis. Infection of mammalian cells with ExoS results in a change in the ratio of GTP/GDP bound directly to Ras in vivo. This ADP-ribosylation of Ras in vivo is mediated by the C-terminal domain of ExoS. Further, ExoS ADP-ribosylation of Ras in vivo inhibits activation of Ras and the ability to interact with the Ras binding domain of Raf upon stimulation with epidermal growth factor (EGF). In the present study, we show that ExoS activity does not interfere with EGF receptor phosphorylation itself, nor with the formation of a Grb2-activated Shc complex upon EGF stimulation, consistent with ExoS blockage of this mitogenic signalling pathway at the level of Ras. This is further supported by our observation of a substantial inhibition of extracellular signal-regulated kinase and protein kinase B/Akt kinase activation in response to EGF upon ExoS infection. In conclusion, in the present study, the consequences of ExoS infection on Ras effector pathway in vivo have been defined.
  •  
8.
  •  
9.
  • Nordfelth, R., et al. (författare)
  • Small-molecule inhibitors specifically targeting type III secretion
  • 2005
  • Ingår i: Infection and Immunity. - Washington : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 73:5, s. 3104-3114
  • Tidskriftsartikel (refereegranskat)abstract
    • The type III secretion (TTS) system is used by several animal and plant pathogens to deliver effector proteins into the cytosol of the eukaryotic target cell as a strategy to evade the defense reactions elicited by the infected organism. The fact that these systems are highly homologous implies that novel antibacterial agents that chemically attenuate the pathogens via a specific interaction with the type III secretion mechanism can be identified. A number of small organic molecules having this potential have recently been identified (A. M. Kauppi, R. Nordfelth, H. Uvell, H. Wolf-Watz, and M. Elofsson, Chem. Biol. 10:241-249, 2003). Using different reporter gene constructs, we showed that compounds that belong to a class of acylated hydrazones of different salicylaldehydes target the TTS system of Yersinia pseudotuberculosis. One of these compounds, compound 1, was studied in detail and was found to specifically block Yop effector secretion under in vitro conditions by targeting the TTS system. In this respect the drug mimics the well-known effect of calcium on Yop secretion. In addition, compound I inhibits Yop effector translocation after infection of HeLa cells without affecting the eukaryotic cells or the bacteria. A HeLa cell model that mimics in vivo conditions showed that compound 1 chemically attenuates the pathogen to the advantage of the eukaryotic cell. Thus, our results show proof of concept, i.e., that small compounds targeting the TTS system can be identified, and they point to the possible use of TTS inhibitors as a novel class of antibacterial agents.
  •  
10.
  • Wang, He, et al. (författare)
  • Increased plasmid copy number is essential for Yersinia T3SS function and virulence
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 353:6298, s. 492-495
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic bacteria have evolved numerous virulence mechanisms that are essential for establishing infections. The enterobacterium Yersinia uses a type III secretion system (T3SS) encoded by a 70-kilobase, low-copy, IncFII-class virulence plasmid. We report a novel virulence strategy in Y. pseudotuberculosis in which this pathogen up-regulates the plasmid copy number during infection. We found that an increased dose of plasmid-encoded genes is indispensable for virulence and substantially elevates the expression and function of the T3SS. Remarkably, we observed direct, tight coupling between plasmid replication and T3SS function. This regulatory pathway provides a framework for further exploration of the environmental sensing mechanisms of pathogenic bacteria.
  •  
11.
  • Wolf-Watz, M, et al. (författare)
  • Structure and backbone dynamics of Apo-CBFbeta in solution.
  • 2001
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 40:38, s. 11423-11432
  • Tidskriftsartikel (refereegranskat)abstract
    • Runx proteins constitute a family of mammalian transcription factors that interact with DNA through their evolutionarily conserved Runt domain. CBFbeta, alternatively denoted PEBP2beta, is the non-DNA-binding heterodimer partner and acts to enhance the DNA binding affinity of Runx proteins. Runx proteins and CBFbeta are associated with a variety of biological functions and human diseases; they are, for example, together the most frequent targets for chromosomal rearrangements in acute human leukemias. We have determined the solution structure and characterized the backbone dynamics of C-terminally truncated fragments containing residues 1-141 of CBFbeta. The present apo-CBFbeta structure is very similar to that seen in a Runt-CBFbeta complex. An evaluation of backbone (15)N NMR relaxation parameters shows that CBFbeta is a rigid molecule with high order parameters throughout the backbone; the only regions displaying significant dynamics are a long loop and the C-terminal alpha-helix. A few residues display relaxation behavior indicating conformational exchange on microsecond to millisecond time scales, but only one of these is located at the Runt binding surface. Our structure and dynamics analysis of CBFbeta therefore suggests that the protein binds to Runt without large conformational changes or induced folding ("lock-and-key" interaction). The apo-CBFbeta structure presented here exhibits several significant differences with two other published NMR ensembles of very similar protein fragments. The differences are located in four regions outside of the central beta-barrel, whereas the beta-barrel itself is almost identical in the three NMR structures. The comparison illustrates that independently determined NMR structures may display rather large differences in backbone conformation in regions that appear to be well-defined in each of the calculated NMR ensembles.
  •  
12.
  • Österberg, Sofia, et al. (författare)
  • Genetic dissection of a motility-associated c-di-GMP signalling protein of Pseudomonas putida
  • 2013
  • Ingår i: Environmental Microbiology Reports. - Hoboken : Wiley-Blackwell. - 1758-2229. ; 5:4, s. 556-565
  • Tidskriftsartikel (refereegranskat)abstract
    • Lack of the Pseudomonas putidaPP2258 protein or its overexpression results in defective motility on solid media. The PP2258 protein is tripartite, possessing a PAS domain linked to two domains associated with turnover of c-di-GMP - a cyclic nucleotide that controls the switch between motile and sessile lifestyles. The second messenger c-di-GMP is produced by diguanylate cyclases and degraded by phosphodiesterases containing GGDEF and EAL or HD-GYP domains respectively. It is common for enzymes involved in c-di-GMP signalling to contain two domains with potentially opposing c-di-GMP turnover activities; however, usually one is degenerate and has been adopted to serve regulatory functions. Only a few proteins have previously been found to have dual enzymatic activities - being capable of both synthesizing and hydrolysing c-di-GMP. Here, using truncated and mutant derivatives of PP2258, we show that despite a lack of complete consensus in either the GGDEF or EAL motifs, the two c-di-GMP turnover domains can function independently of each other, and that the diguanylate cyclase activity is regulated by an inhibitory I-site within its GGDEF domain. Thus, motility-associated PP2258 can be added to the short list of bifunctional c-di-GMP signalling proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy