SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wollscheid Bernd) "

Sökning: WFRF:(Wollscheid Bernd)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bock, Thomas, et al. (författare)
  • Proteomic Analysis Reveals Drug Accessible Cell Surface N-Glycoproteins of Primary and Established Glioblastoma Cell Lines
  • 2012
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:10, s. 4885-4893
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma is the most common primary Glioblastoma Cell Surface Capturing brain tumor in adults with low average survival time after diagnosis. In order to improve glioblastoma treatment, new drug-accessible targets need to be identified. Cell surface glycoproteins are prime drug targets due to their accessibility at the surface of cancer cells. To overcome the limited availability of suitable antibodies for cell surface protein detection, we performed a comprehensive mass spectrometric investigation of the glioblastoma surfaceome. Our combined cell surface capturing analysis of primary ex vivo glioblastoma cell lines in combination with established glioblastoma cell lines revealed 633 N-glycoproteins, which vastly extends the known data of surfaceome drug targets at subcellular resolution. We provide direct evidence of common glioblastoma cell surface glycoproteins and an approximate estimate of their abundances, information that could not be derived from genomic and/or transcriptomic glioblastoma studies. Apart from our pharmaceutically valuable repertoire of already and potentially drug-accessible cell surface glycoproteins, we built a mass-spectrometry-based toolbox enabling directed, sensitive, and repetitive glycoprotein measurements for clinical follow-up studies. The included Skyline Glioblastoma SRM assay library provides an elevated starting point for parallel testing of the abundance level of the detected glioblastoma surfaceome members in future drug perturbation experiments.
  •  
2.
  • Fossati, Andrea, et al. (författare)
  • PCprophet : a framework for protein complex prediction and differential analysis using proteomic data
  • 2021
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 18:5, s. 520-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the availability of methods for analyzing protein complexes, systematic analysis of complexes under multiple conditions remains challenging. Approaches based on biochemical fractionation of intact, native complexes and correlation of protein profiles have shown promise. However, most approaches for interpreting cofractionation datasets to yield complex composition and rearrangements between samples depend considerably on protein–protein interaction inference. We introduce PCprophet, a toolkit built on size exclusion chromatography–sequential window acquisition of all theoretical mass spectrometry (SEC-SWATH-MS) data to predict protein complexes and characterize their changes across experimental conditions. We demonstrate improved performance of PCprophet over state-of-the-art approaches and introduce a Bayesian approach to analyze altered protein–protein interactions across conditions. We provide both command-line and graphical interfaces to support the application of PCprophet to any cofractionation MS dataset, independent of separation or quantitative liquid chromatography–MS workflow, for the detection and quantitative tracking of protein complexes and their physiological dynamics.
  •  
3.
  • Roche, Francis P., et al. (författare)
  • Leukocyte differentiation by histidine-rich glycoprotein/stanniocalcin-2 complex regulates murine glioma growth through modulation of anti-tumor immunity
  • 2018
  • Ingår i: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 17:9, s. 1961-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma-protein histidine-rich glycoprotein (HRG) is implicated in phenotypic switching of tumor-associated macrophages, regulating cytokine production and phagocytotic activity, thereby promoting vessel normalization and anti-tumor immune responses. To assess the therapeutic effect of HRG gene delivery on CNS tumors, we used adenovirus-encoded HRG to treat mouse intracranial GL261 glioma. Delivery of Ad5-HRG to the tumor site resulted in a significant reduction in glioma growth, associated with increased vessel perfusion and increased CD45+ leukocyte and CD8+ T cell accumulation in the tumor. Antibody-mediated neutralization of colony-stimulating factor-1 suppressed the effects of HRG on CD45+ and CD8+ infiltration. Using a novel protein interaction-decoding technology, TRICEPS-based ligand receptor capture (LRC), we identified Stanniocalcin-2 (STC2) as an interacting partner of HRG on the surface of inflammatory cells in vitro and co-localization of HRG and STC2 in gliomas. HRG reduced the suppressive effects of STC2 on monocyte CD14+ differentiation and STC2-regulated immune response pathways. In consequence, Ad5-HRG treated gliomas displayed decreased numbers of Interleukin-35+ Treg cells, providing a mechanistic rationale for the reduction in GL261 growth in response to Ad5-HRG delivery. We conclude that HRG suppresses glioma growth by modulating tumor inflammation through monocyte infiltration and differentiation. Moreover, HRG acts to balance the regulatory effects of its partner, STC2, on inflammation and innate and/or acquired immunity. HRG gene delivery therefore offers a potential therapeutic strategy to control anti-tumor immunity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy