SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Workayehu A. B.) "

Search: WFRF:(Workayehu A. B.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Oyama, S., et al. (author)
  • An Ephemeral Red Arc Appeared at 68 degrees MLat at a Pseudo Breakup During Geomagnetically Quiet Conditions
  • 2020
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:10
  • Journal article (peer-reviewed)abstract
    • Various subauroral optical features have been studied by analyzing data collected during periods of geomagnetic disturbances. Most events have been typically found at geomagnetic latitudes of 45-60 degrees. In this study, however, we present a red arc event found at geomagnetic 68 degrees north (L approximate to 7.1) in the Scandinavian sector during a period of geomagnetically quiet conditions within a short intermission between two high-speed solar wind events. The red arc appeared to coincide with a pseudo breakup at geomagnetic 71-72 degrees N and a rapid equatorward expansion of the polar cap. However, the red arc disappeared in approximately 7 min. Simultaneous measurements with the Swarm A/C satellites indicated the appearance of the red arc at the ionospheric trough minimum and a conspicuous enhancement of the electron temperature, suggesting the generation of the arc by heat flux. Since there are meaningful differences in the red arc features from already-known subauroral optical features such as the stable auroral red (SAR) arc, we considered that the red arc is a new phenomenon. We suggest that the ephemeral red arc may represent the moment of SAR arc birth associated with substorm particle injection, which is generally masked by bright dynamic aurorae.
  •  
2.
  • Aikio, A. T., et al. (author)
  • Swarm Satellite and EISCAT Radar Observations of a Plasma Flow Channel in the Auroral Oval Near Magnetic Midnight
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:6, s. 5140-5158
  • Journal article (peer-reviewed)abstract
    • We present Swarm satellite and EISCAT radar observations of electrodynamical parameters in the midnight sector at high latitudes. The most striking feature is a plasma flow channel located equatorward of the polar cap boundary within the dawn convection cell. The flow channel is 1.5 degrees wide in latitude and contains southward electric field of 150 mV/m, corresponding to eastward plasma velocities of 3,300 m/s in the F-region ionosphere. The theoretically computed ion temperature enhancement produced by the observed ion velocity is in accordance with the measured one by the EISCAT radar. The total width of the auroral oval is about 10 degrees in latitude. While the poleward part is electric field dominant with low conductivity and the flow channel, the equatorward part is conductivity dominant with at least five auroral arcs. The main part of the westward electrojet flows in the conductivity dominant part, but it extends to the electric field dominant part. According to Kamide and Kokubun (1996), the whole midnight sector westward electrojet is expected to be conductivity dominant, so the studied event challenges the traditional view. The flow channel is observed after substorm onset. We suggest that the observed flow channel, which is associated with a 13-kV horizontal potential difference, accommodates increased nightside plasma flows during the substorm expansion phase as a result of reconnection in the near-Earth magnetotail.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view