SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Xiuchen) "

Sökning: WFRF:(Wu Xiuchen)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guo, Weichao, et al. (författare)
  • Mechanisms Controlling Carbon Sinks in Semi-Arid Mountain Ecosystems
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedbacks between the intertwined water and carbon cycles in semi-arid mountain ecosystems can introduce large uncertainties into projections of carbon storage. In this study, we sought to understand the influence of key mechanisms on carbon balances, focusing on an ecosystem whose complex terrain and large interannual variability in precipitation adds to its vulnerability to warming. We applied a dynamic vegetation-ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator) to simulate water-carbon interactions in the 104,512 km2 Mediterranean-climate ecosystems of California's Sierra Nevada for 1950–2099. Our 48 scenarios include a combination of carbon dioxide (CO2) increase, air temperature change, and varying plant rooting depths. We found that with warming (+2 and +5°C), water limitations on growth and enhanced soil respiration reduce carbon storage; however, CO2 fertilization and associated enhanced water-use efficiency offset this loss. Using the 4 km model resolution to capture steep mountain precipitation gradients, plus accounting for the several meters of actual root-accessible water storage in the region, were also important. With warming accompanied by CO2 fertilization our projections show that the Sierra Nevada sequestering at least 200 Tg (2 kg m−2) carbon, versus carbon loss with warming alone. The increase reflects coniferous forests growing at high elevations, and some increase in broadleaved forests at low-to-intermediate elevations. Importantly, uncertainty in fire disturbance could shift our finding from carbon sink to source. The improved mechanistic understanding of these feedbacks can advance modeling of carbon-water interactions in mountain-ecosystem under a warmer and potentially drier climate.
  •  
2.
  • Li, Tiewei, et al. (författare)
  • Increasing Sensitivity of Tree Radial Growth to Precipitation
  • 2024
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 51:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of tree growth to precipitation regulates their responses to drought, and is a crucial metric for predicting ecosystem dynamics and vulnerability. Sensitivity may be changing with continuing climate change, yet a comprehensive assessment of its change is still lacking. We utilized tree ring measurements from 3,044 sites, climate data and CO2 concentrations obtained from monitoring stations, combined with dynamic global vegetation models to investigate spatiotemporal changes in the sensitivity over the past century. We observed an increasing sensitivity since around 1950. This increased sensitivity was particularly pronounced in arid biomes due to the combined effect of increased precipitation and elevated CO2. While elevated CO2 reduced the sensitivity of the humid regions, the intensified water pressure caused by decreased precipitation still increased the sensitivity. Our findings suggest an escalating vulnerability of tree growth to precipitation change, which may increase the risk of tree mortality under future intensified drought.
  •  
3.
  • Shi, Fangzhong, et al. (författare)
  • Seasonal compensation implied no weakening of the land carbon sink in the Northern Hemisphere under the 2015/2016 El Niño
  • 2024
  • Ingår i: Science China Earth Sciences. - 1674-7313 .- 1869-1897. ; 67:1, s. 294-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The recurrent extreme El Niño events are commonly linked to reduced vegetation growth and the land carbon sink over many but discrete regions of the Northern Hemisphere (NH). However, we reported here a pervasive and continuous vegetation greening and no weakened land carbon sink in the maturation phase of the 2015/2016 El Niño event over the NH (mainly in the extra-tropics), based on multiple evidences from remote sensing observations, global ecosystem model simulations and atmospheric CO2 inversions. We discovered a significant compensation effect of the enhanced vegetation growth in spring on subsequent summer/autumn vegetation growth that sustained vegetation greening and led to a slight increase in the land carbon sink over the spring and summer of 2015 (average increases of 23.34% and 0.63% in net ecosystem exchange from two independent datasets relative to a 5-years average before the El Niño event, respectively) and spring of 2016 (6.82%), especially in the extra-tropics of the NH, where the water supply during the pre-growing-season (November of the previous year to March of the current year) had a positive anomaly. This seasonal compensation effect was much stronger than that in 1997 and 1998 and significantly alleviated the adverse impacts of the 2015/2016 El Niño event on vegetation growth during its maturation phase. The legacy effect of water supply during the pre-growing-season on subsequent vegetation growth lasted up to approximately six months. Our findings highlight the role of seasonal compensation effects on mediating the land carbon sink in response to episodic extreme El Niño events.
  •  
4.
  • Wu, Xiuchen, et al. (författare)
  • Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere
  • 2019
  • Ingår i: National Science Review. - : Oxford University Press (OUP). - 2095-5138 .- 2053-714X. ; 6:4, s. 786-795
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades, terrestrial vegetation in the northern hemisphere (NH) has been exposed to warming and more extremely high temperatures. However, the consequences of these changes for terrestrial vegetation growth remain poorly quantified and understood. By examining a satellite-based vegetation index, tree-ring measurements and land-surface model simulations, we discovered a consistent convex pattern in the responses of vegetation growth to temperature exposure (TE) for forest, shrub and grass in both the temperate (30°−50° N) and boreal (50°−70° N) NH during the period of 1982−2012. The response of vegetation growth to TE for the three vegetation types in both the temperate and boreal NH increased convergently with increasing temperature, until vegetation type-dependent temperature thresholds were reached. A TE beyond these temperature thresholds resulted in disproportionately weak positive or even strong negative responses. Vegetation growth in the boreal NH was more vulnerable to extremely high-temperature events than vegetation growth in the temporal NH. The non-linear responses discovered here provide new insights into the dynamics of northern terrestrial ecosystems in a warmer world.
  •  
5.
  • Zhang, Peng, et al. (författare)
  • Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 370:6520, s. 1095-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Unprecedented heatwave-drought concurrences in the past two decades have been reported over inner East Asia. Tree-ring–based reconstructions of heatwaves and soil moisture for the past 260 years reveal an abrupt shift to hotter and drier climate over this region. Enhanced land-atmosphere coupling, associated with persistent soil moisture deficit, appears to intensify surface warming and anticyclonic circulation anomalies, fueling heatwaves that exacerbate soil drying. Our analysis demonstrates that the magnitude of the warm and dry anomalies compounding in the recent two decades is unprecedented over the quarter of a millennium, and this trend clearly exceeds the natural variability range. The “hockey stick”–like change warns that the warming and drying concurrence is potentially irreversible beyond a tipping point in the East Asian climate system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy