SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xiao JJ) "

Sökning: WFRF:(Xiao JJ)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Deng, YX, et al. (författare)
  • Spatial profiling of chromatin accessibility in mouse and human tissues
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7926, s. 375-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2–5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.
  •  
17.
  •  
18.
  •  
19.
  • He, YQ, et al. (författare)
  • A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 1966-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10−7 to 4.79 × 10−44). By incorporating the PRS into EBV-serology-based NPC screening, the test’s positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Zeng, DQ, et al. (författare)
  • Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer
  • 2021
  • Ingår i: Journal for immunotherapy of cancer. - : BMJ. - 2051-1426. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Durable efficacy of immune checkpoint blockade (ICB) occurred in a small number of patients with metastatic gastric cancer (mGC) and the determinant biomarker of response to ICB remains unclear.MethodsWe developed an open-source TMEscore R package, to quantify the tumor microenvironment (TME) to aid in addressing this dilemma. Two advanced gastric cancer cohorts (RNAseq, N=45 and NanoString, N=48) and other advanced cancer (N=534) treated with ICB were leveraged to investigate the predictive value of TMEscore. Simultaneously, multi-omics data from The Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD) and Asian Cancer Research Group (ACRG) were interrogated for underlying mechanisms.ResultsThe predictive capacity of TMEscore was corroborated in patient with mGC cohorts treated with pembrolizumab in a prospective phase 2 clinical trial (NCT02589496, N=45, area under the curve (AUC)=0.891). Notably, TMEscore, which has a larger AUC than programmed death-ligand 1 combined positive score, tumor mutation burden, microsatellite instability, and Epstein-Barr virus, was also validated in the multicenter advanced gastric cancer cohort using NanoString technology (N=48, AUC=0.877). Exploration of the intrinsic mechanisms of TMEscore with TCGA and ACRG multi-omics data identified TME pertinent mechanisms including mutations, metabolism pathways, and epigenetic features.ConclusionsCurrent study highlighted the promising predictive value of TMEscore for patients with mGC. Exploration of TME in multi-omics gastric cancer data may provide the impetus for precision immunotherapy.
  •  
29.
  • Zhang, D, et al. (författare)
  • Spatial epigenome-transcriptome co-profiling of mammalian tissues
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 616:7955, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1–5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.
  •  
30.
  • Zhang, D, et al. (författare)
  • Spatial epigenome-transcriptome co-profiling of mammalian tissues
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615616:79547955, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1–5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.
  •  
31.
  •  
32.
  • Zhao, L, et al. (författare)
  • Original Research: Influence of okadaic acid on hyperphosphorylation of tau and nicotinic acetylcholine receptors in primary neurons
  • 2016
  • Ingår i: Experimental biology and medicine (Maywood, N.J.). - : SAGE Publications. - 1535-3699 .- 1535-3702. ; 241:16, s. 1825-1833
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study was to investigate the influence of hyperphosphorylation of tau induced by okadaic acid on the expression of nicotinic acetylcholine receptors and the neurotoxicity of β-amyloid peptide. Primary cultures of neurons isolated from the hippocampus of the brains of neonatal rats were exposed to okadaic acid or/and Aβ1–42. Tau phosphorylated at Ser404 and Ser202, and the protein expressions of α7, α4 and α3 nAChR subunits were quantified by Western blotting, and their corresponding mRNAs by real-time PCR. Superoxide dismutase activity was assayed biochemically and malondialdehyde by thiobarbituric acid-reactive substance. As compared to controls, phosphorylations of tau at Ser404 and Ser202 in the neurons were elevated by exposure to 20 nM okadaic acid for 48 h but not by 1 or 2 µM Aβ1–42. Treatment with 20 nM okadaic acid or 1 µM Aβ1–42 for 48 h resulted in the reduced α7, α4 and α3 proteins, and α4 and α3 mRNAs, as well as the decreased activity of superoxide dismutase and the increased malondialdehyde. Okadaic acid and Aβ1–42 together caused more pronounced changes in the expressions of α7 and α4, superoxide dismutase activity and lipid peroxidation than either alone. When pre-treatment with vitamin E or lovastatin, the neurotoxicity induced by okadaic acid was significantly attenuated. These findings indicate that hyperphosphorylation of tau induced by okadaic acid inhibits the expression of nicotinic acetylcholine receptors at both the protein and mRNA levels, as well as enhances the neurotoxicity of β-amyloid peptide.
  •  
33.
  •  
34.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy