SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xiao Linhong) "

Sökning: WFRF:(Xiao Linhong)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Martin, et al. (författare)
  • A microscopy-compatible temperature regulation system for single-cell phenotype analysis - demonstrated by thermoresponse mapping of microalgae
  • 2021
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 21:9, s. 1694-1705
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes a programmable heat-stage compatible with in situ microscopy for the accurate provision of spatiotemporally defined temperatures to different microfluidic devices. The heat-stage comprises an array of integrated thin-film Joule heaters and resistance temperature detectors (RTDs). External programming of the heat-stage is provided by a custom software program connected to temperature controllers and heater–sensor pairs. Biologically relevant (20–40 °C) temperature profiles can be supplied to cells within microfluidic devices as spatial gradients (0.5–1.5 °C mm−1) or in a time-varying approach via e.g. step-wise or sinusoidally varying profiles with negligible temperature over-shoot. Demonstration of the device is achieved by exposing two strains of the coral symbiont Symbiodinium to different temperature profiles while monitoring their single-cell photophysiology via chlorophyll fluorometry. This revealed that photophysiological responses to temperature depended on the exposure duration, exposure magnitude and strain background. Moreover, thermal dose analysis suggested that cell acclimatisation occurs under longer temperature (6 h) exposures but not under shorter temperature exposures (15 min). As the thermal sensitivity of Symbiodinium mediates the thermal tolerance in corals, our versatile technology now provides unique possibilities to research this interdependency at single cell resolution. Our results also show the potential of this heat-stage for further applications in fields such as biotechnology and ecotoxicology.
  •  
2.
  • Gao, Yanhong, et al. (författare)
  • Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau
  • 2018
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418 .- 1097-0088. ; 38:3, s. 1285-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • Past studies on regional climate change over the Tibetan Plateau (TP) have mainly looked at changes in the mean climate. This study focuses on past and future extreme precipitations, simulated by global and regional climate models over the TP. To assess the influence of large-scale forcing on dynamic downscaling using Weather Research and Forecasting (WRF) model, downscaling results for the historical period (1980–2005) with ERA-Interim reanalysis and CCSM4 as forcings are evaluated against a gridded observational data set. These are inter-compared before future projections for the period 2005–2100 under two scenarios (RCP4.5 and RCP8.5). The followings are obtained: (1) the reanalysis greatly overestimates not only the mean, but also extreme precipitation. The overestimation in CCSM4 is even larger than that of the reanalysis. (2) The two downscalings outperform their forcings, reflected by reduced overestimation for extreme precipitation frequency, increased spatial pattern correlations and more accurate linear trends, especially for the downscaling driven by CCSM. This demonstrates the constraining power of the fine-scale modelling and the importance of more realistic representations of surface forcing and related processes in the TP. (3) CCSM4 projects a general wetting across the whole TP with increases of heavy precipitation as well as the wetting intensification with warming. WRF also projects an overall wetting, but the wetting is less sensitive to the warming and there is more of an increase in light precipitation frequency. More importantly, a diverse pattern with wetting in the north and drying in the south is found in the dynamical downscaling in contrast to the uniform wetting in its forcing.
  •  
3.
  • Gao, Yanhong, et al. (författare)
  • Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau
  • 2017
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 48:5, s. 1705-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Springer-Verlag Berlin HeidelbergDynamical downscaling modeling (DDM) is important to understand regional climate change and develop local mitigation strategies, and the accuracy of DDM depends on the physical processes involved in the regional climate model as well as the forcing datasets derived from global models. This study investigates the relative role of the land surface schemes and forcing datasets in the DDM over the Tibet Plateau (TP), a region complex in topography and vulnerable to climate change. Three Weather Research and Forecasting model dynamical downscaling simulations configured with two land surface schemes [Noah versus Noah with multiparameterization (Noah-MP)] and two forcing datasets are performed over the period of 1980–2005. The downscaled temperature and precipitation are evaluated with observations and inter-compared regarding temporal trends, spatial distributions, and climatology. Results show that the temporal trends of the temperature and precipitation are determined by the forcing datasets, and the forcing dataset with the smallest trend bias performs the best. Relative to the forcing datasets, land surface processes play a more critical role in the DDM over the TP due to the strong heating effects on the atmospheric circulation from a vast area at exceptionally high elevations. By changing the vertical profiles of temperature in the atmosphere and the horizontal patterns of moisture advection during the monsoon seasons, the land surface schemes significantly regulate the downscaled temperature and precipitation in terms of climatology and spatial patterns. This study emphasizes the selection of land surface schemes is of crucial importance in the successful DDM over the TP.
  •  
4.
  • Jia, Pan, et al. (författare)
  • The combination of 2d layered graphene oxide and 3d porous cellulose heterogeneous membranes for nanofluidic osmotic power generation
  • 2021
  • Ingår i: Molecules. - : MDPI AG. - 1420-3049 .- 1420-3049 .- 1431-5157. ; 26:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO–CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m2 is achieved for the sea–river mimicking system and up to 0.55 W/m2 at a 500-fold salinity gradient. With different functions, the CA and GO membranes served as ion storage layer and ion selection layer, respectively. The GO–CA heterogeneous membrane open a promising avenue for fabrication of porous and layered platform for wide potential applications, such as sustainable power generation, water purification, and seawater desalination.
  •  
5.
  • Johansson, Sofia, et al. (författare)
  • Mapping the thermoresponses of micralgae by integrating single-cell arrays on a programmable temperature stage
  • 2021
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We report on a miniaturized temperature regulation system for the precise control of thermal environments inside microfluidic devices. This system uses a combination of Joule heating and active cooling to achieve defined temperatures to an affixed microfluidic device, allowing for rapid and cost-effective temperature control in single-use devices. Spatiotemporal temperature profiles in a biologically relevant temperature range (20-40 °C) are programmed in a custom software. We illustrate the capabilities of the system with a study of the coral symbiont Symbiodinium at elevated temperatures. Through monitoring of single-cell photophysiology, we evaluate the response to different applied temperature profile and the strain-specific thermal sensitivity thresholds.
  •  
6.
  • Naghavi, Mohsen, et al. (författare)
  • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 385:9963, s. 117-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Up-to-date evidence on levels and trends for age-sex-specifi c all-cause and cause-specifi c mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specifi c all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specifi c causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute diff erences between countries decreased but relative diff erences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative diff erences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specifi c mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
  •  
7.
  • Pontén, Olle, et al. (författare)
  • PACMan : A software package for automated single-cell chlorophyll fluorometry
  • 2024
  • Ingår i: Cytometry Part A. - : John Wiley & Sons. - 1552-4922 .- 1552-4930. ; 105:3, s. 203-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Microalgae, small photosynthetic unicells, are of great interest to ecology, ecotoxicology and biotechnology and there is a growing need to investigate the ability of cells to photosynthesize under variable conditions. Current strategies involve hand-operated pulse-amplitude-modulated (PAM) chlorophyll fluorimeters, which can provide detailed insights into the photophysiology of entire populations- or individual cells of microalgae but are typically limited in their throughput. To increase the throughput of a commercially available MICROSCOPY-PAM system, we present the PAM Automation Control Manager (‘PACMan’), an open-source Python software package that automates image acquisition, microscopy stage control and the triggering of external hardware components. PACMan comes with a user-friendly graphical user interface and is released together with a stand-alone tool (PAMalysis) for the automated calculation of per-cell maximum quantum efficiencies (= Fv/Fm). Using these two software packages, we successfully tracked the photophysiology of >1000 individual cells of green algae (Chlamydomonas reinhardtii) and dinoflagellates (genus Symbiodiniaceae) within custom-made microfluidic devices. Compared to the manual operation of MICROSCOPY-PAM systems, this represents a 10-fold increase in throughput. During experiments, PACMan coordinated the movement of the microscope stage and triggered the MICROSCOPY-PAM system to repeatedly capture high-quality image data across multiple positions. Finally, we analyzed single-cell Fv/Fm with the manufacturer-supplied software and PAMalysis, demonstrating a median difference <0.5% between both methods. We foresee that PACMan, and its auxiliary software package will help increase the experimental throughput in a range of microalgae studies currently relying on hand-operated MICROSCOPY-PAM technologies.
  •  
8.
  • Sun, Jinhua, 1987, et al. (författare)
  • Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li-S Batteries
  • 2021
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 17:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium‐sulfur (Li‐S) batteries are considered one of the most promising energy storage technologies, possibly replacing the state‐of‐the‐art lithium‐ion (Li‐ion) batteries owing to their high energy density, low cost, and eco‐compatibility. However, the migration of high‐order lithium polysulfides (LiPs) to the lithium surface and the sluggish electrochemical kinetics pose challenges to their commercialization. The interactions between the cathode and LiPs can be enhanced by the doping of the carbon host with heteroatoms, however with relatively low doping content (<10%) in the bulk of the carbon, which can hardly interact with LiPs at the host surface. In this study, the grafting of versatile functional groups with designable properties (e.g., catalytic effects) directly on the surface of the carbon host is proposed to enhance interactions with LiPs. As model systems, benzene groups containing N/O and S/O atoms are vertically grafted and uniformly distributed on the surface of expanded reduced graphene oxide, fostering a stable interface between the cathode and LiPs. The combination of experiments and density functional theory calculations demonstrate improvements in chemical interactions between graphene and LiPs, with an enhancement in the electrochemical kinetics, power, and energy densities.
  •  
9.
  • Sun, Yue, et al. (författare)
  • Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage
  • 2023
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 59:18, s. 2571-2583
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy storage devices are important components in portable electronics, electric vehicles, and the electrical distribution grid. Batteries and supercapacitors have achieved great success as the spearhead of electrochemical energy storage devices, but need to be further developed in order to meet the ever-increasing energy demands, especially attaining higher power and energy density, and longer cycling life. Rational design of electrode materials plays a critical role in developing energy storage systems with higher performance. Graphene, the well-known 2D allotrope of carbon, with a unique structure and excellent properties has been considered a “magic” material with its high energy storage capability, which can not only aid in addressing the issues of the state-of-the-art lithium-ion batteries and supercapacitors, but also be crucial in the so-called post Li-ion battery era covering different technologies, e.g., sodium ion batteries, lithium-sulfur batteries, structural batteries, and hybrid supercapacitors. In this feature article, we provide a comprehensive overview of the strategies developed in our research to create graphene-based composite electrodes with better ionic conductivity, electron mobility, specific surface area, mechanical properties, and device performance than state-of-the-art electrodes. We summarize the strategies of structure manipulation and surface modification with specific focus on tackling the existing challenges in electrodes for batteries and supercapacitors by exploiting the unique properties of graphene-related materials.
  •  
10.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
11.
  •  
12.
  • Xiao, Linhong, et al. (författare)
  • Photophysiological response of Symbiodiniaceae single cells to temperature stress
  • 2022
  • Ingår i: The ISME Journal. - : Springer Nature. - 1751-7362 .- 1751-7370. ; 16:8, s. 2060-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthetic dinoflagellates in the family Symbiodiniaceae engage in symbiosis with scleractinian corals. As coral ‘bleaching’ is partly governed by the thermal sensitivity of different Symbiodiniaceae lineages, numerous studies have investigated their temperature sensitivity. However, the systematic identification of single-cells with increased temperature resistance among these dinoflagellates has remained inaccessible, mostly due to a lack of technologies operating at the microscale. Here, we employed a unique combination of microfluidics, miniaturized temperature control, and chlorophyll fluorometry to characterize the single-cell heterogeneity among five representative species within the Symbiodiniaceae family under temperature stress. We monitored single-cell maximum quantum yields (Fv/Fm) of photosystem (PS) II under increasing temperature stress (22‒39 °C, + 1 °C every 15 min), and detected a significant Fv/Fm reduction at lineage-specific temperatures ranging from 28 °C to 34 °C alongside a 40- to 180- fold increase in intraspecific heterogeneity under elevated temperatures (>31 °C). We discovered that the initial Fv/Fm of a cell could predict the same cell’s ability to perform PSII photochemistry under moderate temperature stress (<32 °C), suggesting its use as a proxy for measuring the thermal sensitivity among Symbiodiniaceae. In combination, our study highlights the heterogeneous thermal sensitivity among photosynthetic Symbiodiniaceae and adds critical resolution to our understanding of temperature-induced coral bleaching.
  •  
13.
  • Xiao, Linhong, et al. (författare)
  • Recent Advances in Polymer-Based Photothermal Materials for Biological Applications
  • 2020
  • Ingår i: ACS Applied Polymer Materials. - : American Chemical Society (ACS). - 2637-6105. ; 2:10, s. 4273-4288
  • Forskningsöversikt (refereegranskat)abstract
    • The photothermal effect, which is a phenomenon of converting light energy into thermal energy using photothermal conversion materials, has recently attracted significant attention in biological applications because of the minimal invasiveness to healthy tissues, high specificity, and easy operation. Polymer-based photothermal materials have emerged as a promising category of photothermal agents in biological applications because they show superiorities in tailorable molecular structures, high photothermal conversion efficiencies, and excellent biocompatibility. In this Review, we summarize the recent progresses achieved in polymer-based photothermal materials for biological applications. To have a better understanding of the working mechanism and the design of polymer-based photothermal materials, this Review starts with the fundamental description of photothermal conversion mechanism of polymer-based photothermal materials. According to their structures and compositions, the polymer-based photothermal materials can be classified into three types: conjugated polymers, polymer-modified carbon nanomaterials, and polymer-modified metals and metal compounds. Then we present the recent advances of the polymer-based photothermal materials in a diversity of biological areas such as photothermal therapy and photothermal sterilization. In the last section, we summarize the critical existing issues in polymer-based photothermal materials for biological applications and propose some perspectives that are related to the design and synthesis of polymer-based photothermal materials for biological applications.
  •  
14.
  • Xiao, Linhong, et al. (författare)
  • Studies of Emission Processes of Polymer Additives into Water Using Quartz Crystal Microbalance-A Case Study on Organophosphate Esters
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:8, s. 4876-4885
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic materials contain various additives, which can be released during the entire lifespan of plastics and pose a threat to the environment and human health. Despite our knowledge on leakage of additives from products, accurate and rapid approaches to study emission kinetics are largely lacking, in particular, methodologies that can provide in-depth understanding of polymer/additive interactions. Here, we report on a novel approach using quartz crystal microbalance (QCM) to measure emissions of additives to water from polymer films spin-coated on quartz crystals. The methodology, being accurate and reproducible with a standard error of +/- 2.4%, was applied to a range of organophosphate esters (OPEs) and polymers with varying physicochemical properties. The release of most OPEs reached an apparent steady-state within 10 h. The release curves for the studied OPEs could be fitted using a Weibull model, which shows that the release is a two-phase process with an initial fast phase driven by partitioning of OPEs readily available at or close to the polymer film surface, and a slower phase dominated by diffusion in the polymer. The kinetics of the first emission phase was mainly correlated with the hydrophobicity of the OPEs, whereas the diffusion phase was weakly correlated with molecular size. The developed QCM-based method for assessing and studying release of organic chemicals from a polymeric matrix is well suited for rapid screening of additives in efforts to identify more sustainable replacement polymer additives with lower emission potential.
  •  
15.
  • Xiao, Linhong, et al. (författare)
  • Study of the presence of organic UV filters in the Swedish aquatic environment
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Organic UV filters are widely used in personal care products (PCPs) and textiles to prevent solar erythema and discoloration, respectively. These UV absorbing compounds are frequently released into the aquatic environment, either directly via bathing and swimming, or indirectly via effluents from wastewater treatment plants. Because of their widespread occurrence and potential for bioaccumulation, organic UV filters are considered an emerging concern to ecosystems and humans. In this project, we first reviewed and summarized literature on the worldwide occurrence of organic UV filters and subsequently characterized their occurrence in water environments in Uppsala county, Sweden. Specifically, we selected the ten most commonly detected organic UV filters worldwide as our targets. After optimization of chemical analysis, we were able to detect six out of ten of these compounds at environmentally relevant levels. Subsequently, we investigated the occurrence of these six compounds in surface water and sediment samples from bathing/swimming places located at riversides, lakesides, and the seaside around Uppsala county during August 2021. All six organic UV filters (i.e., 4-methylbenzylidene (4-MBC), avobenzone, octinoxate (EHMC), octocrylene (OC), Uvinul A Plus (UVA Plus), benzophenone-4 (BP-4)) were found in sediment and surface water samples with a detection frequency of 100%, except EHMC, which was detected in 71% of the surface water samples. OC dominated in sediment samples collected from bathing/swimming areas with concentrations ranging between 2.6 and 250 ng g‒1 dry weight (dw), which comprised 52-77% of the sum of all targeted compounds. 4-MBC dominated in surface waters with concentrations ranging between 170 ng L‒1 and 560 ng L‒1, which comprised 39-56% of the sum of all targeted compounds. Overall, organic UV filters were ubiquitously detected in Uppsala county and our data could be foundational for an extended sampling campaign and additional risk assessment of organic UV filters among resident aquatic organisms.
  •  
16.
  • Xiao, Linhong, et al. (författare)
  • Zeitotox : Toxicology and the Rhythms of Life
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:16, s. 11100-11102
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
17.
  • Xu, Jianwei, et al. (författare)
  • Evaluation of global climate models for downscaling applications centred over the Tibetan Plateau
  • 2017
  • Ingår i: International Journal of Climatology. - : Wiley. - 0899-8418 .- 1097-0088. ; 37:2, s. 657-671
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Royal Meteorological Society.Quality of a downscaling depends primarily on the quality of the driving global climate model (GCM). In this study, historical atmospheric conditions simulated by 14 GCMs in CMIP5 are evaluated for downscaling applications centred over the Tibetan Plateau (TP) with ERA-Interim reanalysis as reference. Another reanalysis NCEP-DOE is also used to estimate the uncertainty associated with the reanalyses. Performances of six frequently used GCM variables, involving atmospheric circulation, air temperature and humidity, are evaluated in terms of biases, spatial correlation coefficient, mean absolute error as well as distinct seasonal features. To detect distributional biases, the two-sample Kolmogorov-Smirnov test (KS test) is applied to both the original time series and their anomalies on the monthly scale. A spatial ranking scheme is finally applied to objectively quantify overall relative merits of the GCMs over this region. We found that differences between two reanalysis datasets are negligible over this region. Regarding the GCMs' performances, the biases of the simulated variables show remarkable differences among models. Sea level pressure and 500 hPa geopotential height are well simulated by all the GCMs, whereas specific humidity at 600 hPa has a significant dry bias and temperature at 500 hPa has a sizable cold bias. The spatial pattern of the upper-tropospheric circulation is relatively poorly simulated. The KS test suggests that the climatic mean and higher order moments play about an equal role in causing the errors. According to the ranking scores, CCSM4, CNRM-CM5, MPI-ESM-LR, NorESM1-M, MIROC4h, MPI_ESM_MR and CSIRO-MK are relatively superior to other GCMs for this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17
Typ av publikation
tidskriftsartikel (13)
konferensbidrag (2)
rapport (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Tenje, Maria (4)
Chen, Deliang, 1961 (3)
Andersson, Martin (2)
Larsson, Anders (2)
Hankey, Graeme J. (2)
Liu, Yang (2)
visa fler...
Roberts, Bayard (2)
McKee, Martin (2)
Petzold, Max, 1973 (2)
Ricci, Stefano (2)
Cooper, Cyrus (2)
Weiderpass, Elisabet ... (2)
Brenner, Hermann (2)
Soreide, Kjetil (2)
Ohkubo, Takayoshi (2)
Hay, Simon I. (2)
Badawi, Alaa (2)
Bensenor, Isabela M. (2)
Dandona, Lalit (2)
Dandona, Rakhi (2)
Zaki, Maysaa El Saye ... (2)
Esteghamati, Alireza (2)
Farzadfar, Farshad (2)
Feigin, Valery L. (2)
Forouzanfar, Mohamma ... (2)
Geleijnse, Johanna M ... (2)
Gillum, Richard F. (2)
Jonas, Jost B. (2)
Khader, Yousef Saleh (2)
Khang, Young-Ho (2)
Kokubo, Yoshihiro (2)
Lopez, Alan D. (2)
Lotufo, Paulo A. (2)
Lozano, Rafael (2)
Malekzadeh, Reza (2)
Mendoza, Walter (2)
Miller, Ted R. (2)
Mokdad, Ali H. (2)
Mozaffarian, Dariush (2)
Naghavi, Mohsen (2)
Pereira, David M. (2)
Roth, Gregory A. (2)
Sepanlou, Sadaf G. (2)
Thorne-Lyman, Andrew ... (2)
Thrift, Amanda G. (2)
Vollset, Stein Emil (2)
Vos, Theo (2)
Werdecker, Andrea (2)
Xu, Gelin (2)
Yonemoto, Naohiro (2)
visa färre...
Lärosäte
Uppsala universitet (11)
Göteborgs universitet (5)
Chalmers tekniska högskola (4)
Umeå universitet (2)
Lunds universitet (2)
Karolinska Institutet (2)
visa fler...
Högskolan Dalarna (2)
Naturvårdsverket (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (4)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy