SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xie Zhoupeng) "

Sökning: WFRF:(Xie Zhoupeng)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Berglund, Eva C., et al. (författare)
  • Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in Northern Europe and America
  • 2010
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 19:11, s. 2241-2255
  • Tidskriftsartikel (refereegranskat)abstract
    • Bartonella is a genus of vector-borne bacteria that infect the red blood cells of mammals, and includes several human-specific and zoonotic pathogens. Bartonella grahamii has a wide host range and is one of the most prevalent Bartonella species in wild rodents. We studied the population structure, genome content and genome plasticity of a collection of 26 B. grahamii isolates from 11 species of wild rodents in seven countries. We found strong geographic patterns, high recombination frequencies and large variations in genome size in B. grahamii compared with previously analysed cat- and human-associated Bartonella species. The extent of sequence divergence in B. grahamii populations was markedly lower in Europe and North America than in Asia, and several recombination events were predicted between the Asian strains. We discuss environmental and demographic factors that may underlie the observed differences.
  •  
3.
  • Guy, Lionel, et al. (författare)
  • Low-coverage pyrosequencing reveals recombination and run-off replication in Bartonella henselae strains
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Bartonella henselae is a natural intracellular colonizer of cats, and is transferred by blood-sucking insect vectors. It is also an opportunistic human pathogen. Two strains of B. henselae, thought to be representative of the diversity of the species, were selected for low-coverage 454 sequencing. The comparison of these two strains to the published Houston-1 reveals very high nucleotide identity and low substitution and recombination, with the remarkable exception of phages and host-interaction genes such as type IV and V secretion systems. Among the few variable genes of unknown function, BH14680, an alpha-Proteobacteria-specific gene, shows faster evolution in Bartonella compared to other alpha-Proteobacteria. Its 5’ end, which is likely coding for a domain exposed extracellularly, is under positive or very relaxed selection, and might be involved in host-interaction processes. Finally, we show that a simple genome coverage analysis reveal major genomic events such as duplications and unusual replication modes, such as the run-off replication. The latter, combined with a gene transfer agent, is thought to be a novel way to increase substitution and recombination frequencies. An extensive analysis of all bacterial pyrosequencing projects showed that it is probably Bartonella-specific.
  •  
4.
  • Xie, Zhoupeng, et al. (författare)
  • A selection strategy in plant transformation based on antisense oligodeoxynucleotide inhibition
  • 2014
  • Ingår i: Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 77, s. 954-961
  • Tidskriftsartikel (refereegranskat)abstract
    • Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time-consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co-introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic-resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high-throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant-specific DNA herbicides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy