SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Kequan) "

Sökning: WFRF:(Xu Kequan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xu, Kequan, et al. (författare)
  • Anodic Stripping Voltammetry with the Hanging Mercury Drop Electrode for Trace Metal Detection in Soil Samples
  • 2021
  • Ingår i: chemosensors. - Switzerland : MDPI. - 2227-9040. ; 9, s. 107-
  • Tidskriftsartikel (refereegranskat)abstract
    • The widely spread use of the hanging mercury drop electrode (HMDE) for multi-ion analysis is primarily ascribed to the following reasons: (i) excellent reproducibility owing to the easy renewal of the electrode surface avoiding any hysteresis effect (i.e., a new identical drop is generated for each measurement to be accomplished); (ii) a wide cathodic potential window originating from the passive hydrogen evolution and solvent electrolysis; (iii) the ability to form amalgams with many redox-active metal ions; and (iv) the achievement of (sub)nanomolar limits of detection. On the other hand, the main controversy of the HMDE usage is the high toxicity level of mercury, which has motivated the scientific community to question whether the HMDE deserves to continue being used despite its unique capability for multi-metal detection. In this work, the simultaneous determination of Zn2+, Cd2+, Pb2+, and Cu2+ using the HMDE is investigated as a model system to evaluate the main features of the technique. The analytical benefits of the HMDE in terms of linear range of response, reproducibility, limit of detection, proximity to ideal redox behavior of metal ions and analysis time are herein demonstrated and compared to other electrodes proposed in the literature as less-toxic alternatives to the HMDE. The results have revealed that the HMDE is largely superior to other reported methods in several aspects and, moreover, it displays excellent accuracy when simultaneously analyzing Zn2+, Cd2+, Pb2+, and Cu2+ in such a complex matrix as digested soils. Yet, more efforts are required towards the definitive replacement of the HMDE in the electroanalysis field, despite the elegant approaches already reported in the literature.
  •  
2.
  • Xu, Kequan (författare)
  • Electrochemical detection of trace metals: from traditional techniques to new ultrathin membrane electrodes
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Accurate detection of trace metals in environmental waters is an analytical challenge that is still open for the time being. The current state of the field reveals the predominance of the so-called hanging mercury drop electrode (HMDE) for multi-metal detection by means of anodic stripping voltammetry (ASV) readout. Being aware of the high toxicity of mercury and the high risk of a serious environmental footprint when water measurements are performed with the HMDE, in the past years, the electrochemistry field has rapidly moved towards the provision of tangible alternatives. Yet, none of the proposed methodologies has reached appropriate maturation and/or analytical features to substitute the use of the HMDE in the detection of trace metal ions in water.The investigations presented in this thesis are framed within the direction of new analytical strategies for the detection of trace metals in water, with special focus on the silver ion (Ag+). Voltammetric ion-selective electrodes (ISEs) with a working mechanism conceived on the basis of interconnected charge-transfer (CT) and ion-transfer (IT) processes are selected for such purpose due to their unique characteristics towards decentralized measurements.The first chapter of the thesis aims to provide a general background about electrochemistry measurements of ions, providing special attention to all-solid-state voltammetric ISEs based on ultrathin membranes that provide the CT–IT mechanism. Fundaments about ASV and the use of the HMDE for trace metal detection are also revised. Of particular interest is the case of Ag+ determination, which is not fully addressed with the HMDE. Accordingly, the state-of-the-art of electrochemical analysis of trace Ag+ has been established (Paper I).The second chapter shows the experimental details and the third chapter presents and discusses all the results obtained in this thesis.The first section is about a new analytical strategy for nanomolar detection of Ag+ in waters by coupling a silver-selective electrode (AgSE) based on a CT–IT mechanism with IT stripping voltammetry readout (Paper II). Specifically, the IT occurs via providing the CT process in electrodes that are modified with a redox-active conductive polymer and an ultrathin silver-selective membrane placed on top. Thus, the CT–IT tandem in voltammetric ISEs is unprecedently demonstrated for the detection of Ag+ in different water samples.The second section is based on the improvement of the limit of detection of the developed AgSE to detect sub-nanomolar concentration of Ag+ even in the presence of high interference levels, e.g., sodium ion (Paper III). Through the reduction of the total ion-exchange capacity of the ultrathin membrane, it is possible to increase the effectiveness towards the intake of Ag+ versus sodium ions (Na+) when IT stripping voltammetry is applied. The resulting ISE displayed a limit of detection of 0.05 nM, with a linear range of response up to 10 nM and is successfully applied for the analysis of Ag+ in several water samples, including seawater.The third section presents the investigation of the HMDE for multi-metal detection at trace levels in soil waters while establishing the fundaments, features and controversies of the technique (Paper IV). The entire replacement of the HMDE will only occur when multi-metal trace detection is provided by a sole electrode or an electrode array able to provide similar analytical characteristics, which are collected in this thesis, while avoiding the use of mercury or any other pollutant in the electrode manufacturing.The fourth section inquiries the possibility of using voltammetric ISE based on interconnected CT–IT processes for other trace metals, in particular lead and copper ions (Pb2+ and Cu2+) (Paper V). Despite more work being necessary in that direction, preliminary insights have revealed the potential of the CT–IT technique developed in this thesis towards multi-metal detection either with the incorporation in the membrane of multiple ionophores with different selectivity profiles for each metal or with a multi-sensor array. Accordingly, the research work presented in this thesis has a strong potential towards future investigations in this direction.
  •  
3.
  • Xu, Kequan, et al. (författare)
  • Electrochemical detection of trace silver
  • 2021
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 374
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing utilization of silver and silver nanoparticles (AgNPs) in daily processes and products has led to a significant growth in scientific interest in methods for monitoring silver. In particular, the amount of silver ions (Ag +) released to the environment is known to have a detrimental effect on aquatic ecology, and thus some control actions have been implemented in recent years; for example, the manufacturing industry is now required to control and certify the quantity of AgNPs present in products. Electrochemical sensors are well suited to the task of silver monitoring due to several beneficial properties, including low costs, fast measurements, and facile adaptation to miniaturized, portable instrumentation. The predominant method for electrochemical silver determination involves potentiometric ion selective electrodes (ISEs) and voltammetric measurements. Reviewing the literature of the last ten years reveals significant improvements in the analytical performance of electrochemical sensors, mainly related to the development of new protocols, selective receptors, and electrode materials. Remarkably, ISEs with limits of detection (LOD) in the nanomolar range have been reported, employing careful control of ion fluxes across the membrane interfaces. What's more, sub-nanomolar LODs are attainable by stripping voltammetry using either ligand-based deposition strategies or thin layer membranes coupled to conducting polymers. Selectivity has also been optimized through the membrane composition of ISEs, with special focus on Ag+ ionophores. Furthermore, novel voltammetric methods allow for discrimination between Ag+ and AgNPs. However, there is still a dearth of studies applying such electrochemical sensors to on-site water analysis, and hence, further research is needed in order to translate these laboratory scale achievements to real-world contexts. Overall, this review describes the state-of-the-art in electrochemical silver detection, and provides a comprehensive description of those aspects contributing to the further development and improvement of analytical performance.
  •  
4.
  • Xu, Kequan, et al. (författare)
  • Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene)
  • 2019
  • Ingår i: Sensors and actuators. B, Chemical. - : ELSEVIER SCIENCE SA. - 0925-4005 .- 1873-3077. ; 297
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanometer-sized membranes (thickness of ca 200 nm) backside contacted with a film of poly(3-octylthiophene) (POT) are here interrogated by an electrochemical protocol based on the accumulation and stripping of the target ion aiming at lowering its limit of detection (i.e., in the sub-micromolar range). Thus, using a membrane based on silver ionophore IV (Sigma-Aldrich), which is one of the ionophores regularly used in ion-selective membranes presenting a large binding constant (log beta(Ag-)(ionophore )approximate to 12), it is possible to detect 5 nM concentration of silver with the established methodology. Importantly, this is a 1000-fold lower concentration of silver compared with the case in which the same membrane is subjected to traditional cyclic voltammetry. Essentially, the control of the oxidation state of the POT film by applying a constant potential during a certain period of time (i.e., E-app = 0 V for 720 s) in the presence of silver ions in the sample solution (from 5 to 100 nM) allows for an enrichment of the selective membrane in silver ions. As a result, a subsequent anodic linear sweep potential generates a voltammetric peak for silver transfer across the membrane that comprises a well-defined wave for such very low concentrations of silver in high sodium ion concentration background solution (10 mM NaNO3). Detection of nanomolar levels of silver in different types of natural and environmental waters is herein demonstrated and the results are validated using inductively coupled plasma mass spectrometry.
  •  
5.
  • Xu, Kequan, 1992-, et al. (författare)
  • Subnanomolar detection of ions using thin voltammetric membranes with reduced Exchange capacity
  • 2020
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 321
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we report on a new strategy to improve the limit of detection of ionophore-based thin membranes interrogated under accumulation/stripping electrochemical protocol. Accordingly, we demonstrate subnanomolar detection of silver ion (Ag+) in water samples by re-formulating the membrane content with a reduced amount of the cation exchanger sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (Na+TFPB–), i.e. 10 mmol kg–1 compared to 40 mmol kg–1 commonly used in previous thin cation-selective membranes. Thoughtfully, by decreasing the amount of NaTFPB in the membrane phase, a diminution of its total ion-exchange capacity is to be seen. Essentially, a lower exchange capacity causes that the saturation of the membrane occurs at a lower concentration of Ag+, allowing us to reach a lower limit of detection. This effect is indeed promoted by achieving the total replacement of the Na+ present in the membrane by Ag+ entering from the solution (even at the subnanomolar level) at shorter accumulation times in the readout protocol. For the silver-selective electrode, we found a linear range of response with the peak current from 0.05–10 nM Ag+ concentration. The developed silver-selective electrode is successfully applied to the determination of Ag+ at the (sub)nanomolar level in different water samples (i.e., tap water, seawater and freshwater samples), with the results validated using inductively coupled plasma mass spectrometry as well as recovery studies. In addition, the electrode is suitable for dynamic studies involving the interaction of Ag+ with compounds forming natural organic matter in aquatic resources such as humic acid.
  •  
6.
  •  
7.
  • Xu, Kequan, et al. (författare)
  • Ultrathin ion-selective membranes for trace detection of lead, copper and silver ions
  • 2022
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 427
  • Tidskriftsartikel (refereegranskat)abstract
    • Voltammetric ion-selective electrodes (ISEs) based on poly(3-octylthiophene) (POT) in connection with ultra-thin membranes formulated with different selective receptors (i.e., ionophores) are proposed for detection of lead, copper and silver ions (Pb2+, Cu2+ and Ag+). The working mechanism of the POT-membrane electrode is based on interconnected charge transfer processes on both sides of the membrane, with the overall process depending on the electron transfer in the POT lattice ultimately linked to the ion transfer at the membrane–sample interface. This latter is demonstrated to be controlled by (i) the membrane composition and (ii) the accumulation/stripping electrochemical protocol, allowing the detection of traces of Ag+, Pb2+ and Cu2+. In the case of the Pb2+-selective electrode, the voltammogram displays several peaks that are hypothesized to correspond to different ion–ionophore stoichiometries. Following the signal related to the principal stoichiometry (1:1), a Pb2+ concentration as low as 0.1 nM is measurable. In contrast, the Cu2+- and Ag+-selective electrodes show only one peak for the corresponding ion analyte, which can be also detected at nanomolar concentrations. The results obtained with the three electrodes support their further usage for multi-ion detection in water samples through either a multi-ionophore-based electrode or multiple-electrode device. In any case, the membrane composition, in terms of the ionophore/exchanger molar ratio, is key to achieving a successful analytical application. Upcoming efforts may be directed at the replacement of traditional trace metal ion detection with the hanging mercury drop electrode to develop a more sustainable electrochemical approach without diminishing the analytical performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy