SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Ze Sheng) "

Sökning: WFRF:(Xu Ze Sheng)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gao, Jun, et al. (författare)
  • Coexistence of extended and localized states in finite-sized mosaic Wannier-Stark lattices
  • 2023
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 108:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum transport and localization are fundamental concepts in condensed matter physics. It is commonly believed that in one-dimensional systems, the existence of mobility edges is highly dependent on disorder. Recently, there has been a debate over the existence of an exact mobility edge in a modulated mosaic model without quenched disorder, the so-called mosaic Wannier-Stark lattice. Here, we experimentally implement such disorder-free mosaic photonic lattices using a silicon photonics platform. By creating a synthetic electric field, we could observe energy-dependent coexistence of both extended and localized states in a finite number of waveguides. The Wannier-Stark ladder emerges when the resulting potential is strong enough, and can be directly probed by exciting different spatial modes of the lattice. Our studies provide the experimental proof of coexisting sets of strongly localized and conducting (though weakly localized) states in finite-sized mosaic Wannier-Stark lattices, which hold the potential to encode high-dimensional quantum resources with compact and robust structures.
  •  
2.
  • Gao, Jun, et al. (författare)
  • Observation of Anderson phase in a topological photonic circuit
  • 2022
  • Ingår i: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Disordered systems play a central role in condensed matter physics, quantum transport, and topological photonics. It is commonly believed that a topological nontrivial phase would turn into a trivial phase where the transport vanishes under the effect of Anderson localization. Recent studies predict a counterintuitive result, that adding disorder to the trivial band structure triggers the emergence of protected edge states, the so-called topological Anderson phase. Here, we experimentally observe such a topological Anderson phase in a CMOS-compatible nanophotonic circuit, which implements the Su-Schrieffer-Heeger (SSH) model with incommensurate disorder in the intercell coupling amplitudes. The existence of the Anderson phase is verified by the spectral method, based on the continuous detection of the nanoscale light dynamics at the edge. Our results demonstrate the inverse transition between distinct topological phases in the presence of disorder, as well as offering a single-shot measurement technique to study the light dynamics in nanophotonic systems.
  •  
3.
  • Gao, Jun, et al. (författare)
  • Scalable Generation and Detection of on-Demand W States in Nanophotonic Circuits
  • 2023
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 23:11, s. 5350-5357
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum physics phenomena,entanglement and coherence,are crucialfor quantum information protocols, but understanding these in systemswith more than two parts is challenging due to increasing complexity.The W state, a multipartite entangled state, is notable for its robustnessand benefits in quantum communication. Here, we generate eight-modeon-demand single-photon W states, using nanowire quantum dots anda silicon nitride photonic chip. We demonstrate a reliable and scalabletechnique for reconstructing the W state in photonic circuits usingFourier and real-space imaging, supported by the Gerchberg-Saxtonphase retrieval algorithm. Additionally, we utilize an entanglementwitness to distinguish between mixed and entangled states, therebyaffirming the entangled nature of our generated state. The study providesa new imaging approach of assessing multipartite entanglement in Wstates, paving the way for further progress in image processing andFourier-space analysis techniques for complex quantum systems.
  •  
4.
  • Ma, Jin-Ze, et al. (författare)
  • Environmental Together With Interspecific Interactions Determine Bryophyte Distribution in a Protected Mire of Northeast China
  • 2020
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Question: What environmental variables and plant–plant interactions affect mire bryophyte distribution and does the surrounding landscape with human disturbance play a role in the mire bryophyte distribution?Location: Jinchuan mire, Northeast China.Methods: We studied the spatial distribution of bryophytes in 100 1 × 1 m quadrats in the mire. Spatial variables were simulated by analysis of the distance-based Moran’s eigenvector maps (dbMEM). Variation partitioning analysis was used to reveal the relative contribution of spatial and environmental variables to bryophytes. The relationship between environmental variables and bryophytes was tested by redundancy analysis (RDA). We used co-occurrence and niche overlap models to detect interactions among bryophytes. We also studied the influence of the surrounding landscape on the distribution of bryophytes in relation to water chemistry.Results: The eight bryophytes occupying part of the mire had both a general distribution trend and a local spatial structure. Over 40% of the total variation in cover among bryophytes could be explained by spatial and environmental variables. In this fraction, the environmental variables explained 29.7% of the variation, of which only 4.5% was not spatially structured. RDA showed the contribution of dwarf shrub cover (SC), Na, and P to the bryophyte distribution was relatively large. Concentration of Na and SC decreased gradually from north to south, and contributed most to the variation in species composition along the first axis. The concentrations of P decreased from east to west, and contributed along the second axis. All the bryophyte species were spatially isolated but with large niche overlaps, indicating that the bryophyte community was structured by interspecific competition.Conclusion: Sodium mainly originating from the volcanic hill and P from the paddy fields were the main environmental factors affecting the bryophyte distribution. Concentrations of Na and P showed spatial structure, and resulted in induced spatial dependence (ISD) playing a major role in the spatial structure of the bryophyte community. Dwarf shrubs affected by nutrient distribution in the mire significantly influenced the bryophyte distribution in the mire. We conclude that the surrounding ecosystems had important influence on bryophyte distribution via nutrient influx. Furthermore, competitive interactions exacerbated the spatial separation of bryophytes.
  •  
5.
  • Wang, Ze-Kun, et al. (författare)
  • Assembly of Discrete Chalcogenolate Clusters into a One-Dimensional Coordination Polymer with Enhanced Photocatalytic Activity and Stability
  • 2020
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 59:4, s. 2121-2126
  • Tidskriftsartikel (refereegranskat)abstract
    • Interlinking discrete supertetrahedral chalcogenolate clusters with conjugated bipyridine linkers form a one-dimensional coordination polymer, [Cd6Ag4(SPh)16(DMF)(H2O)(bpe)]n (1a), displaying a broader visible-light absorption and a narrower band gap than those of the discrete cluster. More importantly, the coordination polymer demonstrates enhanced activity and stability for the photocatalytic degradation of organic dye in water.
  •  
6.
  • Xu, Ze-Sheng, et al. (författare)
  • Direct measurement of topological invariants in photonic superlattices
  • 2022
  • Ingår i: PHOTONICS RESEARCH. - : Optica Publishing Group. - 2327-9125. ; 10:12, s. 2901-2907
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the discovery of topological insulators, topological phases have generated considerable attention across the physics community. The superlattices in particular offer a rich system with several degrees of freedom to explore a variety of topological characteristics and control the localization of states. Albeit their importance, characterizing topological invariants in superlattices consisting of a multi-band structure is challenging beyond the basic case of two-bands as in the Su-Schreifer-Heeger model. Here, we experimentally demonstrate the direct measurement of the topological character of chiral superlattices with broken inversion symmetry. Using a CMOS-compatible nanophotonic chip, we probe the state evolving in the system along the propagation direction using novel nano -scattering structures. We employ a two-waveguide bulk excitation scheme to the superlattice, enabling the iden-tification of topological zero-energy modes through measuring the beam displacement. Our measurements reveal quantized beam displacement corresponding to 0.088 and -0.245, in the cases of trivial and nontrivial photonic superlattices, respectively, showing good agreement with the theoretical values of 0 and-0.25. Our results provide direct identification of the quantized topological numbers in superlattices using a single-shot approach, paving the way for direct measurements of topological invariants in complex photonic structures using tailored excitations with Wannier functions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy