SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Changduk) "

Sökning: WFRF:(Yang Changduk)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bai, Yang, et al. (författare)
  • Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-alpha with a 2, 5-substitution and TDY-beta with 3, 4-substitution on the core. It shows that TDY-alpha processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-beta, and amore stablemorphology with the polymer donor. As a result, the TDY-alpha based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.
  •  
2.
  • Fan, Qunping, 1989, et al. (författare)
  • Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms
  • 2020
  • Ingår i: Joule. - : Elsevier BV. - 2542-4351. ; 4:3, s. 658-672
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed three narrow band-gap polymer acceptors PF2-DTC, PF2-DTSi, and PF2-DTGe with different bridging atoms (i.e., C, Si, and Ge). Studies found that such different bridging atoms significantly affect the crystallinity, extinction coefficient, electron mobility of the polymer acceptors, and the morphology and mechanical robustness of related active layers. In all-polymer solar cells (all-PSCs), these polymer acceptors achieved high power conversion efficiencies (PCEs) over 8.0%, while PF2-DTSi obtained the highest PCE of 10.77% due to its improved exciton dissociation, charge transport, and optimized morphology. Moreover, the PF2-DTSi-based active layer showed excellent mechanical robustness with a high toughness value of 9.3 MJ m−3 and a large elongation at a break of 8.6%, which is a great advantage for the practical applications of flexible devices. As a result, the PF2-DTSi-based flexible all-PSC retained >90% of its initial PCE (6.37%) after bending and relaxing 1,200 times at a bending radius of ∼4 mm.
  •  
3.
  • Huang, Yuting, et al. (författare)
  • Host-Guest Strategy Enabling Nonhalogenated Solvent Processing for High-Performance All-Polymer Hosted Solar Cells
  • 2023
  • Ingår i: Chinese journal of chemistry. - : WILEY-V C H VERLAG GMBH. - 1001-604X .- 1614-7065. ; 41:9, s. 1066-1074
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs), usually processed from low-boiling-point and toxic solvents, have reached high values of 18%. However, poor miscibility and uncontrollable crystallinity in polymer blends lead to a notable drop in the PCEs when using green solvents, limiting the practical development of all-PSCs. Herein, a third component (guest) BTO was employed to optimize the miscibility and enhance the crystallinity of PM6/PY2Se-F host film processed from green solvent toluene (TL), which can effectively suppress the excessive aggregation of PY2Se-F and facilitate a nano-scale interpenetrating network morphology for exciton dissociation and charge transport. As a result, TL-processed all-polymer hosted solar cells (all-PHSCs) exhibited an impressive PCE of 17.01%. Moreover, the strong molecular interaction between the host and guest molecules also enhances the thermal stability of the devices. Our host-guest strategy provides a unique approach to developing high-efficiency and stable all-PHSCs processed from green solvents, paving the way for the industrial development of all-PHSCs.
  •  
4.
  • Chen, Haiyang, et al. (författare)
  • A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents
  • 2021
  • Ingår i: Nature Energy. - : NATURE PORTFOLIO. - 2058-7546. ; 6:11, s. 1045-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • The power conversion efficiencies (PCEs) of laboratory-sized organic solar cells (OSCs), usually processed from low-boiling-point and toxic solvents, have reached high values of over 18%. However, there is usually a notable drop of the PCEs when green solvents are used, limiting practical development of OSCs. Herein, we obtain certificated PCEs over 17% in OSCs processed from a green solvent paraxylene (PX) by a guest-assisted assembly strategy, where a third component (guest) is employed to manipulate the molecular interaction of the binary blend. In addition, the high-boiling-point green solvent PX also enables us to deposit a uniform large-area module (36 cm(2)) with a high efficiency of over 14%. The strong molecular interaction between the host and guest molecules also enhances the operational stability of the devices. Our guest-assisted assembly strategy provides a unique approach to develop large-area and high-efficiency OSCs processed from green solvents, paving the way for industrial development of OSCs. Organic solar cells processed from green solvents are easier to implement in manufacturing yet their efficiency is low. Chen et al. devise a guest molecule to improve the molecular packing, enabling devices with over 17% efficiency.
  •  
5.
  • Fan, Qunping, 1989, et al. (författare)
  • A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells
  • 2020
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:45, s. 19835-19840
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.
  •  
6.
  • Liu, Feng, et al. (författare)
  • Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4-b]thiophene-Based Electron Acceptors for Efficient Organic Solar Cells with Reduced Energy Losses
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:38, s. 35193-35200
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonfullerene-based organic solar cells (OSCs) have made a huge breakthrough in the recent years. Introducing a proper side chain on the pi-conjugated backbone plays a vital role for further improving the power conversion efficiency (PCE) of OSCs due to easy tuning of the physical properties of the molecule such as absorption, energetic level, solid-state stacking, and charge transportation. More importantly, the side chain significantly affected the blend films morphology and thus determined the PCEs of the devices. In this work, two low-band-gap nonfullerene acceptors, ATT-4 and ATT-5, with an alkyl or branched alkyl substitute on indacenodithiophene (IDT) and thieno[3,4-b]thiophene (TbT) backbone were synthesized for investigating the effect of the substituent on the performance of the nonfullerene acceptors (NFAs). In comparison to ATT-1 with p-hexylphenyl-substituted IDT and n-octyl-substituted TbT moieties, ATT-4 and ATT-5 exhibit better crystallinity with shorter interchain distance and ordered molecular structure in neat and the corresponding blend films. The tailored ATT-5 exhibits a high PCE of 12.36% with a V-oc of 0.93 V, J(sc) of 18.86 mA cm(-2), and fill factor (FF) of 0.71, blending with a wide-band-gap polymer donor PBDB-T. Remarkably, although ATT-4 and ATT-5 exhibit broader light absorption, the devices obtained higher V-oc than that of ATT-1 mainly due to the reduced nonradiative recombination in the blend films. These results implied that side-chain engineering is an efficient approach to regulate the electronic structure and molecular packing of NFAs, which can well match with polymer donor, and obtain high PCEs of the OSCs with improved V-oc, J(sc), and FF, simultaneously.
  •  
7.
  • Zhou, Zichun, et al. (författare)
  • Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Manipulating charge generation in a broad spectral region has proved to be crucial for nonfullerene-electron-acceptor-based organic solar cells (OSCs). 16.64% high efficiency binary OSCs are achieved through the use of a novel electron acceptor AQx-2 with quinoxaline-containing fused core and PBDB-TF as donor. The significant increase in photovoltaic performance of AQx-2 based devices is obtained merely by a subtle tailoring in molecular structure of its analogue AQx-1. Combining the detailed morphology and transient absorption spectroscopy analyses, a good structure-morphology-property relationship is established. The stronger pi-pi interaction results in efficient electron hopping and balanced electron and hole mobilities attributed to good charge transport. Moreover, the reduced phase separation morphology of AQx-2-based bulk heterojunction blend boosts hole transfer and suppresses geminate recombination. Such success in molecule design and precise morphology optimization may lead to next-generation high-performance OSCs.
  •  
8.
  • Zhu, Can, et al. (författare)
  • Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell
  • 2020
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 13:8, s. 2459-2466
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding effective molecular design strategies to enable efficient charge generation and small energy loss is among the long-standing challenges in developing high performance non-fullerene organic solar cells (OSCs). Recently, we reported Y-series non-fullerene acceptors with an electron-deficient-core-based fused structure (typically Y6), opening a new door to achieve high external quantum efficiency (∼80%) while maintaining low energy loss (∼0.57 eV). On this basis, further reducing the energy losses and ultimately improving the performance of OSCs has become a research hotspot. In this paper, we design and synthesize a new member of the Y-series acceptor family, Y18, which adopts a fused benzotriazole segment with unique luminescence properties as its electron-deficient core. Compared to Y6, the benzotriazole-based acceptor Y18 exhibits extended optical absorption and higher voltage. Consequently, the device delivers a promising power conversion efficiency of 16.52% with a very low energy loss of 0.53 eV. Further device optimization by exploiting a ternary blend strategy allowed us to achieve a high efficiency of 17.11% (certified as 16.76% by NREL). Y18 may become one of the most important candidate materials for its broader absorption spectra and higher voltage of Y18 (compared to Y6) in the OSCs field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy