SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yao Shutao) "

Sökning: WFRF:(Yao Shutao)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Mengmeng, et al. (författare)
  • Statistical analysis of whistler precursors upstream of foreshock transient shocks : MMS observations
  • 2024
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the high-time-resolution data from the Magnetospheric Multiscale mission, precursor waves upstream of foreshock transient (FT) shocks are statistically investigated using the four-spacecraft timing method. The wave frequencies and wave vectors determined in the plasma rest frame (PRF) are shown to follow the cold plasma dispersion relation for whistler waves. Combining with the feature of the right-hand polarization in the PRF, the precursors are identified as whistler-mode waves around the lower hybrid frequency. The occurrence of whistler precursors is independent of the Alfvén Mach number and the FT shock normal angle. More importantly, all the whistler precursors have group velocities pointing upstream in the shock frame, suggesting the dispersive radiation to be a possible generation mechanism. The study improves the understanding of not only the whistler precursors but also the overall FT shock dynamics.
  •  
2.
  • Yao, Shutao, et al. (författare)
  • Observations of kinetic-size magnetic holes in the magnetosheath
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:2, s. 1990-2000
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic holes (MHs), with a scale much greater than ρi (proton gyroradius), have been widely reported in various regions of space plasmas. On the other hand, kinetic-size magnetic holes (KSMHs), previously called small-size magnetic holes, with a scale of the order of magnitude of or less than ρi have only been reported in the Earth's magnetospheric plasma sheet. In this study, we report such KSMHs in the magnetosheath whereby we use measurements from the Magnetospheric Multiscale mission, which provides three-dimensional (3-D) particle distribution measurements with a resolution much higher than previous missions. The MHs have been observed in a scale of 10-20 ρe (electron gyroradii) and lasted 0.1-0.3 s. Distinctive electron dynamics features are observed, while no substantial deviations in ion data are seen. It is found that at the 90 degrees pitch angle, the flux of electrons with energy 34-66 eV decreased, while for electrons of energy 109-1024 eV increased inside the MHs. We also find the electron flow vortex perpendicular to the magnetic field, a feature self-consistent with the magnetic depression. Moreover, the calculated current density is mainly contributed by the electron diamagnetic drift, and the electron vortex flow is the diamagnetic drift flow. The electron magnetohydrodynamics soliton is considered as a possible generation mechanism for the KSMHs with the scale size of 10-20 ρe.
  •  
3.
  • Shi, Quanqi, et al. (författare)
  • Kinetic scale magnetic holes in the terrestrial magnetosheath : a review
  • 2024
  • Ingår i: Science China. Earth Sciences. - : Springer Nature. - 1674-7313 .- 1869-1897. ; 67:9, s. 2739-2771
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic holes at the ion-to-electron kinetic scale (KSMHs) are one of the extremely small intermittent structures generated in turbulent magnetized plasmas. In recent years, the explorations of KSMHs have made substantial strides, driven by the ultra-high-precision observational data gathered from the Magnetospheric Multiscale (MMS) mission. This review paper summarizes the up-to-date characteristics of the KSMHs observed in Earth’s turbulent magnetosheath, as well as their potential impacts on space plasma. This review starts by introducing the fundamental properties of the KSMHs, including observational features, particle behaviors, scales, geometries, and distributions in terrestrial space. Researchers have discovered that KSMHs display a quasi-circular electron vortex-like structure attributed to electron diamagnetic drift. These electrons exhibit noticeable non-gyrotropy and undergo acceleration. The occurrence rate of KSMH in the Earth’s magnetosheath is significantly greater than in the solar wind and magnetotail, suggesting the turbulent magnetosheath is a primary source region. Additionally, KSMHs have also been generated in turbulence simulations and successfully reproduced by the kinetic equilibrium models. Furthermore, KSMHs have demonstrated their ability to accelerate electrons by a novel non-adiabatic electron acceleration mechanism, serve as an additional avenue for energy dissipation during magnetic reconnection, and generate diverse wave phenomena, including whistler waves, electrostatic solitary waves, and electron cyclotron waves in space plasma. These results highlight the magnetic hole’s impact such as wave-particle interaction, energy cascade/dissipation, and particle acceleration/heating in space plasma. We end this paper by summarizing these discoveries, discussing the generation mechanism, similar structures, and observations in the Earth’s magnetotail and solar wind, and presenting a future extension perspective in this active field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy