SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yassin Mohammed A.) "

Sökning: WFRF:(Yassin Mohammed A.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Khatri, C, et al. (författare)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
7.
  • Tabbara, A., et al. (författare)
  • Evaluation of apical dimension, canal taper and maintenance of root canal morphology using XP-endo shaper
  • 2019
  • Ingår i: Journal of Contemporary Dental Practice. - : Jaypee Brothers Medical Publishers (P) Ltd. - 1526-3711. ; 20:2, s. 136-144
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the shaping ability of the XP-endo shaper file system in maxillary molars, representing root canals with variation in morphology. Materials and methods: Twenty maxillary molars were instrumented according to recommended protocols. Pre- and postoperative microcomputed tomography (CT) scans were performed and the root canals classified according to canal type and curvature. The volume change, number of strokes needed to prepare the canals and the size of the 0.04-tapered gutta-percha cone that was adapted in the canal were recorded. Results: XP-endo shapercreated a significant change in volume after instrumentation in all the canals, with the biggest change found in the DB canals, followed by the MB1 and the P canals, both at full length and in the apical 4 mm. The number of strokes needed to achieve working length and final shape did not differ between the various root canals. Although not significant, the number of strokes needed to prepare the root canal increased with severity of the curvature, but the severity of the curvature did not result in increased removal of dentin in the apical 4 mm. It was possible to achieve a final root canal size where a 0.04-tapered gutta-percha cone could be adapted. Conclusion: The XP-endo shaper was a safe and effective instrument to achieve a root canal preparation of at least size 30 and a 0.04 taper. Clinical significance: The clinical performance of XP-endo shaper was to some extent dependent on preoperative volume and curvature of the root canal.
  •  
8.
  • Tigchelaar, Michelle, et al. (författare)
  • Compound climate risks threaten aquatic food system benefits
  • 2021
  • Ingår i: Nature Food. - : Springer Science and Business Media LLC. - 2662-1355. ; 2:9, s. 673-682
  • Tidskriftsartikel (refereegranskat)abstract
    • The nutritional, economic and livelihood contributions provided by aquatic food systems are threatened by climate change. Building climate resilience requires systemic interventions that reduce social vulnerabilities. Aquatic foods from marine and freshwater systems are critical to the nutrition, health, livelihoods, economies and cultures of billions of people worldwide, but climate-related hazards may compromise their ability to provide these benefits. Here, we estimate national-level aquatic food system climate risk using an integrative food systems approach that connects climate hazards impacting marine and freshwater capture fisheries and aquaculture to their contributions to sustainable food system outcomes. We show that without mitigation, climate hazards pose high risks to nutritional, social, economic and environmental outcomes worldwide-especially for wild-capture fisheries in Africa, South and Southeast Asia, and Small Island Developing States. For countries projected to experience compound climate risks, reducing societal vulnerabilities can lower climate risk by margins similar to meeting Paris Agreement mitigation targets. System-level interventions addressing dimensions such as governance, gender equity and poverty are needed to enhance aquatic and terrestrial food system resilience and provide investments with large co-benefits towards meeting the Sustainable Development Goals.
  •  
9.
  • Yassin, Mohammed A., et al. (författare)
  • Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration
  • 2015
  • Ingår i: Journal of Biomedical Materials Research. Part A. - : Wiley. - 1549-3296 .- 1552-4965. ; 103:11, s. 3649-3658
  • Tidskriftsartikel (refereegranskat)abstract
    • Constructs intended for bone tissue engineering (TE) are influenced by the initial cell seeding density. Therefore, the objective of this study was to determine the effect of bone marrow stromal stem cells (BMSCs) density loaded onto copolymer scaffolds on bone regeneration. BMSCs were harvested from rat's bone marrow and cultured in media with or without osteogenic supplements. Cells were seeded onto poly(l-lactide-co-epsilon-caprolactone) [poly(LLA-co-CL)] scaffolds at two different densities: low density (1 x 10(6) cells/scaffold) or high density (2 x 10(6) cells/scaffold) using spinner modified flasks and examined after 1 and 3 weeks. Initial attachment and spread of BMSC onto the scaffolds was recorded by scanning electron microscopy. Cell proliferation was assessed by DNA quantification and cell differentiation by quantitative real-time reverse transcriptase-polymerized chain reaction analysis (qRT-PCR). Five-millimeter rat calvarial defects (24 defects in 12 rats) were implanted with scaffolds seeded with either low or high density expanded with or without osteogenic supplements. Osteogenic supplements significantly increased cell proliferation (p < 0.001). Scaffolds seeded at high cell density exhibited higher mRNA expressions of Runx2 p=0.001, Col1 p=0.001, BMP2 p<0.001, BSP p<0.001, and OC p=0.013. More bone was formed in response to high cell seeding density (p=0.023) and high seeding density with osteogenic medium (p=0.038). Poly (LLA-co-CL) scaffolds could be appropriate candidates for bone TE. The optimal number of cells to be loaded onto scaffolds is critical for promoting Extracellular matrix synthesis and bone formation. Cell seeding density and osteogenic supplements may have a synergistic effect on the induction of new bone.
  •  
10.
  • Ahlinder, Astrid, et al. (författare)
  • Nondegradative additive manufacturing of medical grade copolyesters of high molecular weight and with varied elastic response
  • 2020
  • Ingår i: Journal of Applied Polymer Science. - : WILEY. - 0021-8995 .- 1097-4628. ; 137:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Although additive manufacturing through melt extrusion has become increasingly popular as a route to design scaffolds with complex geometries the technique if often limited by the reduction in molecular weight and the viscoelastic response when degradable aliphatic polyesters of high molecular weight are used. Here we use a melt extruder and fused filament fabrication printer to produce a reliable nondegradative route for scaffold fabrication of medical grade copolymers of L-lactide, poly(epsilon-caprolactone-co-L-lactide), and poly(L-lactide-co-trimethylene carbonate). We show that degradation is avoided using filament extrusion and fused filament fabrication if the process parameters are deliberately chosen based upon the rheological behavior, mechanical properties, and polymer composition. Structural, mechanical, and thermal properties were assessed throughout the process to obtain comprehension of the relationship between the rheological properties and the behavior of the medical grade copolymers in the extruder and printer. Scaffolds with a controlled architecture were achieved using high-molecular-weight polyesters exhibiting a large range in the elastic response causing negligible degradation of the polymers.
  •  
11.
  • Bashari, Mohanad, et al. (författare)
  • Fabrication and Characterization of Dextranase Nano-Entrapped Enzymes in Polymeric Particles Using a Novel Ultrasonication-Microwave Approach
  • 2023
  • Ingår i: Catalysts. - : MDPI. - 2073-4344. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current study, a novel method to improve the nano-entrapment of enzymes into Ca-alginate gel was investigated to determine the synergistic effects of ultrasound combined with microwave shock (UMS). The effects of UMS treatment on dextranase enzymes loading effectiveness (LE) and immobilization yield (IY) were investigated. By using FT-IR spectra and SEM, the microstructure of the immobilized enzyme (IE) was characterized. Additionally, the free enzyme was used as a control to compare the reusability and enzyme-kinetics characteristics of IEs produced with and without UMS treatments. The results demonstrated that the highest LE and IY were obtained when the IE was produced with a US of 40 W at 25 kHz for 15 min combined with an MS of 60 W at a shock rate of 20 s/min for 20 min, increasing the LE and the IY by 97.32 and 78.25%, respectively, when compared with an immobilized enzyme prepared without UMS treatment. In comparison with the control, UMS treatment dramatically raised the Vmax, KM, catalytic, and specificity constant values for the IE. The outcomes suggested that a microwave shock and ultrasound combination would be an efficient way to improve the immobilization of enzymes in biopolymer gel.
  •  
12.
  • Belal, Amany, et al. (författare)
  • A Novel Hydroxyapatite/Vitamin B-12 Nanoformula for Treatment of Bone Damage: Preparation, Characterization, and Anti-Arthritic, Anti-Inflammatory, and Antioxidant Activities in Chemically Induced Arthritic Rats
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI. - 1424-8247. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B-12 nanoformula in Complete Freunds adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential. We synthesized pure HAP NPs with 71.01% loading weight percentages of Vit B12 and 49 mg/g loading capacity. Loading of vitamin B-12 on hydroxyapatite was modeled by Monte Carlo simulation. Anti-arthritic, anti-inflammatory, and antioxidant effects of the prepared nanoformula were assessed. Treated arthritic rats showed lower levels of RF and CRP, IL-1 beta, TNF-alpha, IL-17, and ADAMTS-5, but higher IL-4 and TIMP-3 levels. In addition, the prepared nanoformula increased GSH content and GST antioxidant activity while decreasing LPO levels. Furthermore, it reduced the expression of TGF-beta mRNA. Histopathological examinations revealed an improvement in joint injuries through the reduction of inflammatory cell infiltration, cartilage deterioration, and bone damage caused by Complete Freunds adjuvant. These findings indicate that the anti-arthritic, antioxidant, and anti-inflammatory properties of the prepared nanoformula could be useful for the development of new anti-arthritic treatments.
  •  
13.
  • Jain, Shubham, et al. (författare)
  • Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters
  • 2020
  • Ingår i: Biomacromolecules. - : AMER CHEMICAL SOC. - 1525-7797 .- 1526-4602. ; 21:2, s. 388-396
  • Forskningsöversikt (refereegranskat)abstract
    • Various 3D printing techniques currently use degradable polymers such as aliphatic polyesters to create well-defined scaffolds. Even though degradable polymers are influenced by the printing process, and this subsequently affects the mechanical properties and degradation profile, degradation of the polymer during the process is not often considered. Degradable scaffolds are today printed and cell-material interactions evaluated without considering the fact that the polymer change while printing the scaffold. Our methodology herein was to vary the printing parameters such as temperature, pressure, and speed to define the relationship between printability, polymer microstructure, composition, degradation profile during the process, and rheological behavior. We used high molecular weight medical-grade (co)polymers, poly(L-lactide-co-epsilon-caprolactone) (PCLA), poly(L-lactide-co-glycolide) (PLGA), and poly(D,L-lactide-co-glycolide) (PDLGA), with L-lactide content ranging from 25 to 100 mol %, for printing in an extrusion-based printer (3D Bioplotter). Optical microscopy confirmed that the polymers were printable at high resolution and good speed, until a certain degree of degradation. The results show also that printability can not be claimed just by optimizing printing parameters and highlight the importance of a careful analysis of how the polymer's structure and properties vary during printing. The polymers thermally decomposed from the first processing minute and caused a decrease in the average block length of the lactide blocks in the copolymers and generated lower crystallinity. Poly(L-lactide) (PLLA) and PCLA are printable at a higher molecular weight, less degradation before printing was possible, compared to PLGA and PDLGA, a result explained by the higher complex viscosity and more elastic polymeric melt of the copolymer containing glycolide (GA) and lactide (LA). In more detail, copolymers comprised of LA and epsilon-caprolactone (CL) formed lower molecular weight compounds over the course of printing, while the PLGA copolymer was more susceptible to intermolecular transesterification reactions, which do not affect the overall molecular weight, but cause changes in the copolymer microstructure. This results in a longer printing time for PLGA than PLLA and PCLA.
  •  
14.
  •  
15.
  • Rashad, Ahmad, et al. (författare)
  • Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells
  • 2018
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 19:11, s. 4307-4319
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase release assays confirmed that CNF did not inhibit cellular viability. The CNF between the 3D printed PCL strands and pores acted as a hydrophilic barrier, enhancing cell seeding efficiency, and proliferation. CNF supported the formation of a well-organized actin cytoskeleton and cellular production of vinculin protein on the surfaces of TCP and PCL scaffolds. Moreover, CNF-coated surfaces enhanced not only alkaline phosphatase activity, but also collagen Type-I and mineral formation. It is concluded that CNF coating enhances cell attachment, proliferation, and osteogenic differentiation and has the potential to improve the performance of 3D printed PCL scaffolds for bone tissue engineering.
  •  
16.
  • Sharma, S., et al. (författare)
  • Adenoviral mediated mono delivery of BMP2 is superior to the combined delivery of BMP2 and VEGFA in bone regeneration in a critical-sized rat calvarial bone defect
  • 2019
  • Ingår i: Bone Reports. - : Elsevier. - 2352-1872. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from osteogenesis, neovascularization of the defect area is an important determinant for successful bone healing. Accordingly, several studies have employed the combined delivery of VEGFA and BMP2 for bone regeneration. Nevertheless, the outcomes of these studies are highly variable. The aim of our study was to compare the effectiveness of adenoviral mediated delivery of BMP2 alone and in combination with VEGFA in rat bone marrow stromal cells (rBMSC)seeded on a poly(LLA-co-CL)scaffold in angiogenesis and osteogenesis using a critical-sized rat calvarial defect model. Both mono delivery of BMP2 and the combined delivery of a lower ratio of VEGFA and BMP2 (1:4)led to up-regulation of osteogenic genes (Alpl and Runx2)and increased calcium deposition in vitro, compared with the GFP control. Micro computed tomography (microCT)analysis of the rat calvarial defect at 8 weeks showed that the mono delivery of BMP2 (43.37 ± 3.55% defect closure)was the most effective in healing the bone defect, followed by the combined delivery of BMP2 and VEGFA (27.86 ± 2.89%)and other controls. Histological and molecular analyses supported the microCT findings. Analysis of the angiogenesis, however, showed that both mono delivery of BMP2 and combined delivery of BMP2 and VEGFA had similar angiogenic effect in the calvarial defects. Examination of the key genes related to host response against the adenoviral vectors showed that the current model system was not associated with adverse immune response. Overall, the results show that the mono delivery of BMP2 was superior to the combined delivery of BMP2 and VEGFA in healing the critical-sized rat calvarial bone defect. These findings underscore the importance of appropriate growth factor combination for the successful outcome in bone regeneration.
  •  
17.
  • Sharma, Sunita, et al. (författare)
  • Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model
  • 2018
  • Ingår i: Stem Cell Research &amp; Therapy. - : BioMed Central. - 1757-6512. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In bone tissue engineering (BTE), extensive research into vascular endothelial growth factor A (VEGFA)-mediated angiogenesis has yielded inconsistent results. The aim of this study was to investigate the influence on angio-and osteogenesis of adenoviral-mediated delivery of VEGFA alone or in combination with bone morphogenetic protein 2 (BMP2) in bone marrow stromal cells (BMSC) seeded onto a recently developed poly(LLA-co-CL) scaffold. Methods: Human BMSC were engineered to express VEGFA alone or in combination with BMP2 and seeded onto poly(LLA-co-CL) scaffolds. Changes in angiogenic and osteogenic gene and protein levels were examined by quantitative reverse-transcription polymerase chain reaction (RT-PCR), PCR array, and alkaline phosphatase assay. An in vivo subcutaneous mouse model was used to investigate the effect on angio-and osteogenesis of VEGFA alone or in combination with BMP2, using microcomputed tomography (mu CT), histology, immunohistochemistry, and immunofluorescence. Results: Combined delivery of a lower ratio (1: 3) of VEGFA and BMP2 (ad-BMP2 + VEGFA) led to upregulation of osteogenic and angiogenic genes in vitro at 3 and 14 days, compared with mono-delivery of VEGFA (ad-VEGFA) and other controls. In vivo, in a subcutaneous mouse model, both ad-VEGFA and ad-BMP2 + VEGFA scaffold explants exhibited increased angiogenesis at 2 weeks. Enhanced angiogenesis was largely related to the recruitment and differentiation of mouse progenitor cells to the endothelial lineage and, to a lesser extent, to endothelial differentiation of the implanted BMSC. mu CT and histological analyses revealed enhanced de novo bone formation only in the ad-BMP2 + VEGFA group, corresponding at the molecular level to the upregulation of genes related to osteogenesis, such as ALPL, RUNX2, and SPP1. Conclusions: Although BMSC expressing VEGFA alone or in combination with BMP2 significantly induced angiogenesis, VEGFA alone failed to demonstrate osteogenic activity both in vitro and in vivo. These results not only call into question the use of VEGFA alone in bone regeneration, but also highlight the importance in BTE of appropriately formulated combined delivery of VEGFA and BMP2.
  •  
18.
  • Yassin, Mohammed A., et al. (författare)
  • 3D and Porous RGDC-Functionalized Polyester-Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells
  • 2019
  • Ingår i: Macromolecular Bioscience. - : WILEY-V C H VERLAG GMBH. - 1616-5187 .- 1616-5195. ; 19:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyester-based scaffolds covalently functionalized with arginine-glycine-aspartic acid-cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide-co-trimethylene carbonate), poly(LA-co-TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt-leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA-co-TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage.
  •  
19.
  • Yassin, Mohammed A., et al. (författare)
  • A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration
  • 2017
  • Ingår i: Macromolecular Bioscience. - : WILEY-V C H VERLAG GMBH. - 1616-5187 .- 1616-5195. ; 17:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l-lactide-co-e-caprolactone) (poly(LLA-co-CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA-co-CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC-seeded poly(LLA-co-CL)/ nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA-co-CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA-co-CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy