SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(You Henghui) "

Sökning: WFRF:(You Henghui)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Han, et al. (författare)
  • A co-doped oxygen reduction catalyst with FeCu promotes the stability of microbial fuel cells
  • 2022
  • Ingår i: Journal of Colloid and Interface Science. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0021-9797 .- 1095-7103. ; 628, s. 652-662
  • Tidskriftsartikel (refereegranskat)abstract
    • Air cathode microbial fuel cell (AC-MFC) cannot be used on a large scale because of its low oxygen reduction reaction (ORR) efficiency. Despite the fact that bimetallic catalysts can greatly enhance the oxygen reduction rate by regulating the electronic structure of the active site, the flaws of insufficient exposure of the active site and easy metal agglomeration limit its catalytic activity. Herein, we report on the preparation of a stable heteroatomic substrate using a copper material organic framework as a precursor, covered by Fe-based active sites. As a result of dipole-dipole interactions, the reduced product Fe2+ forms a weak Fe-O surface that is conducive to the adsorption of active substances. The presence of Fe-0 enhances the electrical conductivity of the catalytic, thus promoting ORR efficiency. Through redox coupling, the D -band center of Fe at FeCu@CN is optimized and brought close to the Fermi level to facilitate electron transfer. Notably, FeCu@CN demonstrates a superior power density of 2796.23 +/- 278.58 mW m(-3), far exceeding that of Pt/C (1363.93 +/- 102.56 mW m(-3)), in the application of microbial fuel cells (MFCs). Meanwhile, the MFC-loaded FeCu@CN maintains excellent stability and outstanding output voltage after 1000 h, which provides feasibility for large-scale application. (C) 2022 Elsevier Inc. All rights reserved.
  •  
2.
  • Wang, Hongyu, et al. (författare)
  • Co/Fe co-doped ZIF-8 derived hierarchically porous composites as high-performance electrode materials for Cu2+ions capacitive deionization
  • 2023
  • Ingår i: Chemical Engineering Journal. - : ELSEVIER SCIENCE SA. - 1385-8947 .- 1873-3212. ; 460
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to a threat to human life from heavy metal ions pollution, unprecedented interest has been gained in the development of water purification technologies. Here, we explore another new approach to exploit a prospective carbon material for removing copper ions from aqueous solution based on rapid and easy capacitive deionization (CDI). Reasonable carbon materials modification with ideal composition and improved morphological structure is essential to additionally optimize the capabilities of CDI. We prepared a nitrogen-rich hierarchically porous carbon composites (CoFe-NC) with uniform cobalt (Co) and iron (Fe) doped metal in carbon skeleton by a simple impregnation and pyrolysis method, derived from zeolitic imidazolate framework-8, to use as highly effective CDI electrode for copper ions removal. The addition of Fe can facilitate the uniform dispersion of metals, and enable the formation of a stable carbon cage after pyrolysis. It can sufficiently expose active sites of the electrode materials and promote interfacial charge transfer, thus improving CDI electrosorption efficiency. CoFe-NC composites electrode can achieve outstanding deionization capacity (91.31 mg g-1) in 25 mg L-1 CuSO4 solu-tion. The carbon cage structure of CoFe-NC not only prevents aggregation of metals and avoids destruction of rich multistage pore system by pyrolysis, but also induces a faster ions transport rate. In addition, density functional theory calculations demonstrated that the co-doping of Co and Fe can remarkably increase the adsorption en-ergies of Cu2+ ions, leading to excellent selectivity, which indicates that CoFe-NC composites can be a desired CDI electrode material.
  •  
3.
  • Wang, Hongyu, et al. (författare)
  • Exploration of selective copper ion separation from wastewater via capacitive deionization with highly effective 3D carbon framework-anchored Co(PO3)2 electrode
  • 2024
  • Ingår i: Separation and Purification Technology. - : ELSEVIER. - 1383-5866 .- 1873-3794. ; 336
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing amount of heavy metal copper ions (Cu2+) in industrial emissions, poses a serious threat to human health, biological environment, and resource scarcity. Capacitive deionization (CDI) is considered as a green and efficient method for desalination. It is crucial to develop high-performance electrodes for efficient operation of CDI that go beyond conventional carbon and yield considerable environmental benefits. Here, metal organic frameworks (MOFs) derived carbon-loaded cobalt metaphosphate (NC-Co(PO3)2) was prepared by lowtemperature gas-solid phosphating for Cu2+ removal as CDI electrode for the first time. NC-Co(PO3)2 demonstrated superior electrode structure and function due to the synergistic effects of electric double layer coupling PO bonds, the binding tendency of metaphosphate groups with Cu2+, and interfacial redox reactions induced by the labile valence state of cobalt. The optimal electrosorption capacity of NC-Co(PO3)2 was 95.41 mg g-1 at 1 V in 50 mL Cu2+ solution with splendid cyclic regeneration capability. Moreover, NC-Co(PO3)2 exhibited excellent selectivity and outstanding electrosorption performance in the presence of multiple coexisting ions and this CDI system realized the purification of actual copper-containing wastewater. A series of characterizations further revealed the specific mechanism of Cu2+ in adsorption-desorption process. Our finding strongly supported NCCo(PO3)2 electrode can extend the CDI platform's capability for effectively removing and retrieving Cu2+ from wastewater.
  •  
4.
  • You, Henghui, et al. (författare)
  • Novel Strontium/Iron Bimetallic Carbon Composites as Synergistic Catalyst for Oxygen Reduction Reaction in Microbial Fuel Cells
  • 2021
  • Ingår i: Electrocatalysis. - : SPRINGER. - 1868-2529 .- 1868-5994. ; 12:6, s. 759-770
  • Tidskriftsartikel (refereegranskat)abstract
    • It is critical to develop non-noble metal (NNM) electrocatalysts with excellent stability and innovative activity for oxygen reduction reaction (ORR) in the microbial fuel cells (MFCs), which is a promising energy conversion technology. Herein, the preparation of iron carbide electrocatalysts (SrCO3/Fe3C) by the pyrolysis of a bimetal precursor (Sr and Fe) is proposed as a feasible strategy to realize a highly active electrocatalyst for ORR. Based on the catalytic potential of Sr-based materials, Fe species doping can provide more beneficial active sites for ORR. Concisely, the SrCO3/Fe3C(1:12) catalyst achieves the onset potential of 0.197 V (vs. Ag/AgCl) superior than Pt/C catalyst (0.193 V vs. Ag/AgCl) and the half-wave potential of -0.157 V (vs. Ag/AgCl) in 0.1-M KOH solution. Furthermore, the electrocatalyst exhibits nearly four-electron pathway, and generates less than 3% H2O2. Compared with Pt/C catalyst, it possesses preferable stability and superior methanol tolerance. Moreover, a composite electrode with SrCO3/Fe3C(1:12) as a catalyst on the carbon cloth demonstrated a superb air cathode in MFCs with a power density of 398.98 mW m(-2), which can outperform than 10 wt% Pt/C catalysts (342.13 mW m(-2)) on MFCs.
  •  
5.
  • Zhang, Hongguo, et al. (författare)
  • Cu-doped CaFeO3 perovskite oxide as oxygen reduction catalyst in air cathode microbial fuel cells
  • 2022
  • Ingår i: Environmental Research. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0013-9351 .- 1096-0953. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • Cathode electrocatalyst is quite critical to realize the application of microbial fuel cells (MFCs). Perovskite oxides have been considered as potential MFCs cathode catalysts to replace Pt/C. Herein, Cu-doped perovskite oxide with a stable porous structure and excellent conductivity was successfully prepared through a sol-gel method. Due to the incorporation of Cu, CaFe0.9Cu0.1O3 has more micropores and a larger surface area, which are more conducive to contact with oxygen. Doping Cu resulted in more Fe3+ in B-site and thus enhanced its binding capability to oxygen molecules. The data from electrochemical test demonstrated that the as-prepared catalyst has good conductivity, high stability, and excellent ORR properties. Compared with Pt/C catalyst, CaFe0.9Cu0.1O3 exhibits a lower overpotential, which had an onset potential of 0.195 V and a half-wave potential of 0.224 V, respectively. CaFe0.9Cu0.1O3 displays an outstanding four-electron pathway for ORR mechanism and demonstrates superiors corrosion resistance and stability. The MFC with CaFe0.9Cu0.1O3 has a greater maximum power density (1090 mW m(-3)) rather than that of Pt/C cathode (970 mW m(-3)). This work demonstrated CaFe0.9Cu0.1O3 is an economic and efficient cathodic catalyst for MFCs.
  •  
6.
  • Zhong, Kengqiang, et al. (författare)
  • Facile gas-steamed synthesis strategy of N, F co-doped defective porous carbon for enhanced oxygen-reduction performance in microbial fuel cells
  • 2023
  • Ingår i: Journal of Power Sources. - : ELSEVIER. - 0378-7753 .- 1873-2755. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • The metal-free carbon-based catalyst with low cost and high oxygen reduction reaction (ORR) activity is urgently desired to satisfy the demands of microbial fuel cells (MFCs). However, it is still a great challenge to develop a facile and feasible strategy to construct efficient active sites of heteroatom doping for carbon-based electrocatalyst. Herein, we report a strategy based on an ammonium fluoride (NH4F) gas-steamed metal-organic frameworks (MOFs) to heighten structural defects and density of N, F active sites of metal-free catalyst. Oxygen temperature-programmed deposition and density functional theory results confirm that the NH4F gas-steamed process greatly enhances the adsorption affinity of O2 and oxygen intermediates on the catalysts. The resulted N and F co-doped porous carbon cage (FNC-15) demonstrates outstanding ORR catalytic activity and long-term stability in alkaline and neutral electrolytes. This work proposes a facile and efficient in situ gas-steamed strategy to develop metal-free cathode catalysts with superior performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy