SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yu Changxun 1983 ) "

Sökning: WFRF:(Yu Changxun 1983 )

  • Resultat 1-50 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Qiang, et al. (författare)
  • Microbial Necromass, Lignin, and Glycoproteins for Determining and Optimizing Blue Carbon Formation
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58, s. 468-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands contribute to the mitigation of climate change through the sequestration of “blue carbon”. Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.
  •  
2.
  • Liu, Linan, et al. (författare)
  • Silicon Effects on Biomass Carbon and Phytolith-Occluded Carbon in Grasslands Under High-Salinity Conditions
  • 2020
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 11, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in climate and land use are causing grasslands to suffer increasingly fromabiotic stresses, including soil salinization. Silicon (Si) amendment has been frequentlyproposed to improve plant resistance to multiple biotic and abiotic stresses and increaseecosystem productivity while controlling the biogeochemical carbon (C) cycle. However,the effects of Si on plant C distribution and accumulation in salt-suffering grasslandsare still unclear. In this study, we investigated how salt ions affected major elementalcomposition in plants and whether Si enhanced biomass C accumulation in grasslandspecies in situ. In samples from the margins of salt lakes, our results showed that thediffering distance away from the shore resulted in distinctive phytocoenosis, includinghalophytes and moderately salt-tolerant grasses, which are closely related to changingsoil properties. Different salinity (NaC/KC, ranging from 0.02 to 11.8) in plants causednegative effects on plant C content that decreased from 53.9 to 29.2% with theincrease in salinity. Plant Si storage [0.02–2.29 g Si m?2 dry weight (dw)] and plantSi content (0.53 to 2.58%) were positively correlated with bioavailable Si in soils(ranging from 94.4 to 192 mg kg?1). Although C contents in plants and phytoliths werenegatively correlated with plant Si content, biomass C accumulation (1.90–83.5 g Cm?2 dw) increased due to the increase of Si storage in plants. Plant phytolith-occludedcarbon (PhytOC) increased from 0.07 to 0.28h of dry mass with the increase of Sicontent in moderately salt-tolerant grasses. This study demonstrates the potential ofSi in mediating plant salinity and C assimilation, providing a reference for potentialmanipulation of long-term C sequestration via PhytOC production and biomass Caccumulation in Si-accumulator dominated grasslands.
  •  
3.
  • Christel, Stephan, et al. (författare)
  • Comparison of Boreal Acid Sulfate Soil Microbial Communities in Oxidative and Reductive Environments
  • 2019
  • Ingår i: Research in Microbiology. - : Elsevier. - 0923-2508 .- 1769-7123. ; 170:6-7, s. 288-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to land uplift after the last ice age, previously stable Baltic Sea sulfidic sediments are becoming dry land. When these sediments are drained, the sulfide minerals are exposed to air and can release large amounts of metals and acid into the environment. This can cause severe ecological damage such as fish kills in rivers feeding the northern Baltic Sea. In this study, five sites were investigated for the occurrence of acid sulfate soils and their geochemistry and microbiology was identified. The pH and soil chemistry identified three of the areas as having classical acid sulfate soil characteristics and culture independent identification of 16S rRNA genes identified populations related to acidophilic bacteria capable of catalyzing sulfidic mineral dissolution, including species likely adapted to low temperature. These results were compared to an acid sulfate soil area that had been flooded for ten years and showed that the previously oxidized sulfidic materials had an increased pH compared to the unremediated oxidizied layers. In addition, the microbiology of the flooded soil had changed such that alkalinity producing ferric and sulfate reducing reactions had likely occurred. This suggested that flooding of acid sulfate soils mitigates their environmental impact.
  •  
4.
  • Han, Guilin, et al. (författare)
  • Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China
  • 2020
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier. - 0167-8809 .- 1873-2305. ; 301, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil stable carbon (C) and nitrogen (N) isotopes are widely used to indicate C3/C4 vegetation history, N sources and transformation processes, respectively. However, land use change, particularly converting forest into farm land, alters soil organic matter (SOM) sources and processes in soils, resulting in a hard understanding of soil C and N fate. In the present study, soil organic carbon (SOC) and soil organic nitrogen (SON) contents, and their stable isotope compositions (δ13C and δ15N) were determined in the five soil profiles under land use change (i.e., conversion of native forest land into shrub land, grass land, maize field, and paddy land) in Lobo county, Guizhou province, Southwest China. A coupling of 13C and 15N isotope in SOM under land use change was verified whether it could provide more accurate indications of sources and transformation processes.The SOC and SON contents of native forest land at the 0∼20 cm depth were significantly larger than these under other transformed lands. The SOC and SON contents decreased exponentially with increasing soil depth under all land use types, and showed opposite trends with soil pH. The C/N ratios of SOM in the soils under undisturbed native forest decreased from 10 to 7 with increasing soil depth, while an irregular fluctuation along soil profile was shown in other transformed lands. Similarly to the most study in the soils under C3 forest, the δ13C and δ15N values of SOM in the soils under native forest at the 0∼50 cm depth increased with increasing soil depth, with the range of −27.7‰∼−25.7‰ and 6.5‰∼10.0‰, respectively. While decreasing trends of them in the soils below 50 cm depth were attributed to the mixing of 13C and 15N-depleted organic matters from bedrocks. However, the δ13C and δ15N values of SOM along the soil profiles under other transformed lands were intensively irregularly fluctuated between −29.1‰ and −19.0‰, 1.2‰ and 7.9‰, respectively. The single δ13C and δ15N signals in the soil profiles of transformed lands indeed revealed the alterations of historical C3/C4 composition and N transformation processes after land use change, but these indications were not specific. The result of the coupling of 13C and 15N isotope under native forest land reveals a positive relationship between them, which associated with full plant-absorption against 15N-depleted inorganic nitrogen derived from SOM mineralization. This study suggests that the coupling of CN isotope fractionation more likely occurs in the C3 forest ecosystem with high N utilization efficiency. However, the replacement of native forest by farm land or grass land will reduce soil N utilization efficiency.
  •  
5.
  • Hao, Qian, et al. (författare)
  • Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 737, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon (C) present in lake sediments is an important global sink for CO2; however, an in-depth understanding of the impact of climate variability and the associated changes in vegetation on sediment C dynamics is still lacking. A total of 13 lakes were studied to quantify the influence of climate and vegetation on the reconstructed Holocene C accumulation rate (CAR) in lake sediments of the modern East Asian monsoonal margin. The corresponding paleoclimate information was assessed, including the temperature (30–90°N in the Northern Hemisphere) and precipitation (indicated by the δ18O of the Sanbao, Dongge, and Hulu caves). The Holocene vegetation conditions were inferred by pollen records, including arboreal pollen/non-arboreal pollen and pollen percentages. The results showed that the peak CAR occurred during the mid-Holocene, coinciding with the strongest period of the East Asian summer monsoon and expansion of forests. Lakes in the temperate steppe (TS) regions had a mean CAR of 13.41 ± 0.88 g C m−2 yr−1, which was significantly greater than the CARs of temperate desert (TD) and highland meadow/steppe (HMS; 6.76 ± 0.29 and 7.39 ± 0.73 g C m−2 yr−1, respectively). The major influencing factor for the TS sub-region was vegetation dynamics, especially the proportion of arboreal vegetation, while temperature and vegetation coverage were more important for the HMS. These findings indicate that C accumulation in lake sediments is linked with climate and vegetation changes over long timescales; however, there was notable spatial heterogeneity in the CARs, such as opposing temporal changes and different major influencing factors among the three sub-regions during the mid-Holocene. Aridification and forest loss would decrease C storage. However, prediction of C accumulation remains difficult because of the spatial heterogeneity in CARs and the interaction between the CAR and various factors under future climate change conditions.
  •  
6.
  • Hao, Qian, et al. (författare)
  • Organic blue carbon sequestration in vegetated coastal wetlands : Processes and influencing factors
  • 2024
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 255
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands play a vital role in carbon (C) sequestration, named 'blue carbon'. The review aims to disentangle the processes and influencing factors, including elevated atmospheric CO2, global climate warming, sea level rise and anthropogenic activities. Firstly, we provided an overview of C processes, including input, output, and deposition, in coastal wetlands. We then summarized the impacts of different factors on C processes by modifying soil physicochemical properties, plant growth, vegetation type, and microbial community composition. Vegetation composition was a major contributor to C inputs, and C outputs was mainly controlled by microbial decomposition. Increased atmospheric CO2 concentration and associated climate warming often enhanced vegetation growth, while climate warming also promoted soil C decomposition. As a result, C storage could increase under mild warming conditions in the short-term, but decrease in the long-term as the severity of warming intensifies. Elevated salinity, caused by sea level rise, can be harmful to plant growth and inhibit organic C decomposition because of the reduced biomass and the weakened metabolic capacity of microorganisms. Most of human activities, such as reclamation, can lead to less C input and more C output, resulting in decreased C storage in coastal wetlands. Additionally, we also illustrate various coastal wetland restoration methods aimed at enhancing C sequestration, including legal frameworks, scientific theories, vegetation management, hydrological restoration, and other relevant constructions. Vegetation management could benefit plant growth and enhance C input effectively, and hydrological restoration can maintain the harmonious development of coastal wetland ecosystems. Other constructions, including breakwater, spillway, and dredged material, could protect coastal wetlands, especially facing sea level rise. This review offers valuable theoretical support and scientific references for the sustainable development and management of coastal wetlands in a changing climate.
  •  
7.
  • Hao, Qian, et al. (författare)
  • Silicon Affects Plant Stoichiometry and Accumulation of C, N, and P in Grasslands
  • 2020
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 11, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon (Si) plays an important role in improving soil nutrient availability and plant carbon (C) accumulation and may therefore impact the biogeochemical cycles of C, nitrogen (N), and phosphorus (P) in terrestrial ecosystems profoundly. However, research on this process in grassland ecosystems is scarce, despite the fact that these ecosystems are one of the most significant accumulators of biogenic Si (BSi). In this study, we collected the aboveground parts of four widespread grasses and soil profile samples in northern China and assessed the correlations between Si concentrations and stoichiometry and accumulation of C, N, and P in grasses at the landscape scale. Our results showed that Si concentrations in plants were significantly negatively correlated (p< 0.01) with associated C concentrations. There was no significant correlation between Si and N concentrations. It is worth noting that since the Si concentration increased, the P concentration increased from less than 0.10% to more than 0.20% and therefore C:P and N:P ratios decreased concomitantly. Besides, the soil noncrystalline Si played more important role in C, N, and P accumulation than other environmental factors (e.g., MAT, MAP, and altitude). These findings indicate that Si may facilitate grasses in adjusting the utilization of nutrients (C, N, and P) and may particularly alleviate P deficiency in grasslands. We conclude that Si positively alters the concentrations and accumulation of C, N, and P likely resulting in the variation of ecological stoichiometry in both vegetation and litter decomposition in soils. This study further suggests that the physiological function of Si is an important but overlooked factor in influencing biogeochemical cycles of C and P in grassland ecosystems.
  •  
8.
  • Hao, Qian, et al. (författare)
  • Soil silicon fractions along karst hillslopes of southwestern China
  • 2022
  • Ingår i: Journal of Soils and Sediments. - : Springer Nature. - 1439-0108 .- 1614-7480. ; 22, s. 1121-1134
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The karst region in southwestern China is undergoing soil erosion and rocky desertification. The different silicon (Si) fractions along the hillslopes in this mountainous region could benefit plant growth and alleviate the ecological deterioration. However, extensive distribution of carbonate rocks may lead to limited plant available Si. The mountainous terrain in karst region also leads to more Si output, which seriously affects the biogeochemical cycle of Si in this area. Yet, the soil Si fractions in the karst region have not been fully evaluated. Methods Soil profiles and their corresponding plants were sampled from two typical karst mountains in Guizhou, China. The different fractions of non-crystalline Si in soil, accounting for the most important pool for Si availability to plants, were analyzed by the improved sequential chemical extraction and Si concentrations in plants grown in this region were also measured. Results The concentration and storage of non-crystalline Si were higher at lower slopes (storage was 2.44, 2.73, and 3.25 kg center dot m(-2) for upper, middle, and lower slopes, respectively) than other slope positions. Grasses dominated at lower slopes and contained significantly higher Si (mean +/- SD: 14.42 +/- 6.63 mg center dot g(-1)) than trees and shrubs (1.94 +/- 1.78 and 1.29 +/- 1.00 mg center dot g(-1), respectively), which were primarily distributed on upper slopes. However, Si concentrations of the same plant species in different slope positions had no significant correlation with soil acid Na acetate-Si, the Si regarded as directly available for plants. Conclusions This study suggests that plant species and soil properties have a significant impact on the soil Si distribution of hillslopes in karst region. Soil erosion may decrease non-crystalline Si concentrations in soils and impair Si uptake in grasses, which need to be considered in ecosystem management in this region.
  •  
9.
  • Hao, Qian, et al. (författare)
  • Vegetation Determines Lake Sediment Carbon Accumulation during Holocene in the Forest-Steppe Ecotone in Northern China
  • 2021
  • Ingår i: Forests. - : MDPI. - 1999-4907. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the past carbon accumulation of forest-steppe ecotone and to identify the main drivers of the long-term carbon dynamics, we selected Huangqihai Lake and analyzed the sediment records. We measured the organic carbon content (TOC; %) of sedimentary samples and quantified the carbon accumulation rate (CAR; g C m(-2) yr(-1)). Furthermore, the climate, soil erosion, and vegetation development of the past 6800 years were reconstructed using physicochemical parameters and pollen records. Human activities were also obtained from a 2200-year history record. Our results showed that the CAR was high during 5800 similar to 4100 cal yr BP (40 similar to 60 g C m(-2) yr(-1)), which is mainly attributed to the high sediment accumulation rate (SAR) during this period. Pearson's correlation, redundancy analysis and hierarchical variation partitioning analyses suggested that the CAR was influenced by the SAR and TOC, while vegetation dynamics (broadleaved tree percentage and vegetation coverage) and local soil erosion were the main drivers of the TOC and SAR. Especially when the vegetation was dominated by broadleaved forests, the CAR was significantly high due to the high gross primary productivity and carbon density of forest compared with steppe. Our study highlights the direct influence of local vegetation and soil erosion on the CAR, whereas climate might influence indirectly by changing local vegetation and soil conditions. Moreover, our results showed that human activities had positive influences on the carbon accumulation dynamics in this region since 2200 cal yr BP by influencing the SAR.
  •  
10.
  • Ketzer, João Marcelo, et al. (författare)
  • Discovery of a major seafloor methane release site in Europe : The Landsort deep, Baltic Sea.
  • 2024
  • Ingår i: EGU General Assembly 2024. - : European Geosciences Union (EGU).
  • Konferensbidrag (refereegranskat)abstract
    • A recently acquired multidisciplinary dataset comprising acoustic surveys (high-resolution sub- bottom profiles, multi-beam bathymetry, and broad band mid-water echo sounder), geochemistry (gas chemical and isotopic composition, porewater chemistry), and sedimentology (core lithology and X-ray CT) in the area of the Landsort deep (450 m of depth), south of Stockholm Archipelago, revealed the existence of an extensive (20 km2) region of the seafloor where massive gas release is occurring in the form of multiple bubble streams. This new discovery represents a major seafloor methane release site in Europe and is comparable in area to other large sites worldwide such as the ones in Svalbard and in the South Atlantic Ocean associated with gas hydrate provinces. The gas is formed mostly by methane of microbial origin. Surprisingly, bubbles rise 100’s of meters above the seafloor and reach surface waters above the halocline/oxycline at around 80 m of depth. Some bubbles appear to reach the sea-air interface and their potential methane contribution to the atmosphere is under investigation. Another surprising observation is the absence of major seafloor features like pockmarks in the gas release area. The reasons for the seafloor methane release in the Landsort deep are still not entirely clear, but our preliminary acoustic and sedimentological data suggest that bottom currents may have acted to facilitate the accumulation of organic-rich sediments in a thick drift deposit during the Holocene and the modern warm period (latest 100 years). Our data further suggest that the high sedimentation rate in the drift deposit continuously supplies fresh organic matter that is quickly buried below a thin sulphate reduction zone, fueling vigorous methanogenesis and abundant methane formation. Similar methane release sites might be discovered in other known large drift deposits in the Baltic Sea. 
  •  
11.
  • Li, Zichuan, et al. (författare)
  • Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands
  • 2018
  • Ingår i: Journal of Integrative Agriculture. - : Elsevier. - 2095-3119. ; 17:10, s. 2182-2195
  • Forskningsöversikt (refereegranskat)abstract
    • Crop harvesting and residue removal from croplands often result in imbalanced biogeochemical cycles of carbon and nutrients in croplands, putting forward an austere challenge to sustainable agricultural production. As a beneficial element, silicon(Si) has multiple eco-physiological functions, which could help crops to acclimatize their unfavorable habitats. Although many studies have reported that the application of Si can alleviate multiple abiotic and biotic stresses and increase biomass accumulation, the effects of Si on carbon immobilization and nutrients uptake into plants in croplands have not yet been explored. This review focused on Si-associated regulation of plant carbon accumulation, lignin biosynthesis, and nutrients uptake, which are important for biogeochemical cycles of carbon and nutrients in croplands. The tradeoff analysis   the supply of bioavailable Si can enhance plant net photosynthetic rate and biomass carbon production (especially root biomass input to soil organic carbon pool), but reduce shoot lignin biosynthesis. Besides, the application of Si could improve uptake of most nutrients under deficient conditions, but restricts excess uptake when they are supplied in surplus amounts. Nevertheless, Si application to crops may enhance the uptake of nitrogen and iron when they are supplied in deficient to luxurious amounts, while potassium uptake enhanced by Si application is often involved in alleviating salt stress and inhibiting excess sodium uptake in plants. More importantly, the amount of Si accumulated in plant positively correlates with nutrients release during the decay of crop biomass, but negatively correlates with straw decomposability due to the reduced lignin synthesis. The Si-mediated plant growth and litter decomposition collectively suggest that Si cycling in croplands plays important roles in biogeochemical cycles of carbon and nutrients. Hence, scientific Si management in croplands will be helpful for maintaining sustainable development of agriculture.
  •  
12.
  • Nyman, Alexandra, et al. (författare)
  • A nationwide acid sulfate soil study : A rapid and cost-efficient approach for characterizing large-scale features
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 869
  • Tidskriftsartikel (refereegranskat)abstract
    • Acid sulfate soils are sulfide-rich soils that pose a notable environmental risk as their strong acidity and low pH mobilizes metals from soil minerals leading to both acidification and metal contamination of the surrounding environment. In this study a rapid and cost-efficient approach was developed to resolve the main distribution patterns and geochemical features of acid sulfate soils throughout coastal plains stretching for some 2000 km in eastern, southern, and western Sweden. Of the investigated 126 field sites, 47 % had acid sulfate soils including 33 % active, 12 % potential, and 2 % pseudo acid sulfate soils. There were large regional variations in the extent of acid sulfate soils, with overall much higher proportions of these soils along the eastern coastal plains facing the Baltic Sea than the western coastal plains facing the Kattegatt/Skagerrak (Atlantic Ocean). The sulfur concentrations of the soil's parent material, consisting of reduced near-pH neutral sediments, were correlated inversely both with the minimum pH of the soils in situ (rS = −0.65) and the pH after incubation (oxidation) of the reduced sediments (rS = −0.77). This indicated the importance of sulfide levels in terms of both present and potential future acidification. Hence, the higher proportion of acid sulfate soils in the east was largely the result of higher sulfur concentrations in this part of the country. The study showed that the approach was successful in identifying large-scale spatial patterns and geochemical characteristics of importance for environmental assessments related to these environmentally unfriendly soils.
  •  
13.
  • Nyman, Alexandra, et al. (författare)
  • Multi-element features of active acid sulfate soils across the Swedish coastal plains
  • 2023
  • Ingår i: Applied Geochemistry. - : Elsevier. - 0883-2927 .- 1872-9134. ; 152
  • Tidskriftsartikel (refereegranskat)abstract
    • Acid sulfate soils are sulfide-rich soils with notable associated environmental risks. The low pH of these soils mobilizes metals from the soil minerals, which will lead to both acidification and metal contamination of the surrounding environment. This paper presents the results of a geochemical study of 66 profiles of acid sulfate soils collected from a total of 22 sites (three profiles for each site) on the Swedish coastal plains, which stretch for some 2000 km along the Baltic Sea and Kattegat. The reduced zone at the bottom of the profiles was characterized by pH frequently >6.0, the transition zone (above the reduced zone) by a steep pH gradient from near-neutral to weakly acidic, and the oxidized zone located above the transition zone by highly acidic conditions with a pH minimum <4.0. Each zone in each profile was sampled for geochemical analyses. The aqua regia extractable S concentrations ranged widely in the reduced zone (0.06–7.5%) and were strongly depleted in the oxidized zone (median decrease 69%) from extensive sulfide oxidation and associated severe acidification and sulfate leaching. In addition to S, there were significant losses from the oxidized zone of eight alkali and alkaline earth metals (Ba, Be, Ca, K, Li, Mg, Na, and Sr), four first row transition metals (Co, Mn, Ni, and Zn), three second row transition metals (Cd, Y, and Zr), the rare earth elements (Ce, La, and Yb), and Al, Th, and B. These elements would therefore be expected to be enriched in nearby surface waters, which was supported by hydrogeochemistry data from elsewhere in the boreal zone. Nineteen other chemical elements were not significantly lost from the oxidized zone relative to the reduced zone (Fe, Ti, W, Se, Sc, V, Cu, Cr, P, In, Te, Ag, Sb, Bi, Sn, Mo, U, As, and Pb) and therefore, would not be expected to occur in elevated concentrations in acid sulfate soil affected surface waters, as was supported by literature data from elsewhere in the boreal zone. A hypothesis of more extensive oxidation, acidification, and leaching of the soils in south Sweden (hemiboreal zone) than north Sweden (boreal zone) due to a warmer climate in the former region was rejected based upon pH and multi-element patterns from 9 field sites from the north and 12 field sites from the south. Consequently, the losses were likely primarily controlled by local factors, such as time since drainage and soil development. However, the oxidized zone was significantly thicker in the north (median: 75 cm) than south (median: 40 cm). This suggested that although the proportional losses (i.e., difference in elemental concentrations between the oxidized and reduced zones) were overall not different between the two regions, the total amount of elements lost from the soils will have been larger in the north. Of the elements with no significant losses, several were extracted with 1 M HCl to a larger extent in the oxidized than the reduced zone (Fe, As, Cr, Cu, Mo, Sc, Ti, U, and V). This indicated retention in the acidic environment following release from weathered and/or oxidized soil minerals. These elements, of which several are particularly toxic (As, Cr, and U), may thus be mobilized and leached if the soils geochemical conditions change either naturally or via human activities.
  •  
14.
  • Qin, Zhilian, et al. (författare)
  • Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales : Implications for potential of long-term carbon storage
  • 2021
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier. - 0341-8162 .- 1872-6887. ; 198, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Black shales are characterized by a high content of organic carbon (C). Few studies have focused on the influence of land use on soil organic C (SOC) fractions from soils derived from black shale (black shale soils). The objective of this study was to elucidate the influence of land use on SOC fractions in black shale soils combining chemical determination and stable C isotope analysis techniques. Herein, we determined labile organic C (LOC), semilabile organic C (Semi-LOC), and recalcitrant organic C (ROC) fractions in various depths of soils in paddy fields (0-70 cm) and forests (0-120 cm) from black shale distribution region in Hunan province, China, and then investigated delta C-13 values of these soils. Results showed that the contents of LOC, Semi-LOC, and ROC in paddy soils (1.63-7.35 g kg(-1), 0.35-1.21 g kg(-1), and 3.75-14.8 g kg(-1), respectively) and forest soils (0.73-4.94 g kg(-1), 0.12-0.89 g kg(-1), and 1.44-8.96 g kg(-1), respectively) are significantly decreased with increasing depth. The contribution made by LOC to SOC in paddy soils was significantly lower than that in forest soils, while the contribution made by ROC to SOC was significantly higher in paddy soils than that in forest soils. In these two land uses, the delta C-13 values were higher in SOC compared to the ROC fraction, while the delta C-13 values were close in the ROC fraction below 20 cm soil depth. Our study indicated that i) new C is mainly limited to the surface soil layer (0-10 cm) in forests, while it can be leached along the soil profiles in paddy fields; ii) the estimated ROC pool is similar to 900 Pg within the 0-100 cm soil layer in terrestrial ecosystems, which should better represent the ability of soil C sequestration.
  •  
15.
  • Sandhi, Arifin, et al. (författare)
  • Arsenic in the water and agricultural crop production system : Bangladesh perspectives
  • 2022
  • Ingår i: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 29, s. 51354-51366
  • Forskningsöversikt (refereegranskat)abstract
    • The presence of high levels of carcinogenic metalloid arsenic (As) in the groundwater system of Bangladesh has been considered as one of the major environmental disasters in this region. Many parts of Bangladesh have extensively reported the presence of high levels of arsenic in the groundwater due to both geological and anthropogenic activities. In this paper, we reviewed the available literature and scientific information regarding arsenic pollution in Bangladesh, including arsenic chemistry and occurrences. Along with using As-rich groundwater as a drinking-water source, the agricultural activities and especially irrigation have greatly depended on the groundwater resources in this region due to high water demands for ensuring food security. A number of investigations in Bangladesh have shown that high arsenic content in both soil and groundwater may result in high levels of arsenic accumulation in different plants, including cereals and vegetables. This review provides information regarding arsenic accumulation in major rice varieties, soil-groundwater-rice arsenic interaction, and past arsenic policies and plans, as well as previously implemented arsenic mitigation options for both drinking and irrigation water systems in Bangladesh. In conclusion, this review highlights the importance and necessity for more in-depth studies as well as more effective arsenic mitigation action plans to reduce arsenic incorporation in the food chain of Bangladesh.
  •  
16.
  • Shahabi-Ghahfarokhi, Sina, et al. (författare)
  • Extensive dispersion of metals from hemiboreal acid sulfate soil into adjacent drain and wetland
  • 2024
  • Ingår i: Applied Geochemistry. - : Elsevier Ltd.. - 0883-2927 .- 1872-9134. ; 136
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive red/brown precipitates of unknown origin and composition have caused ecological degradation of a wetland nature reserve (the Water Kingdom Biosphere Reserve) in the hemiboreal zone in south Sweden. Chemical analyses of samples containing the precipitates showed strong dominates of Fe and elevated levels of rare earth elements (REEs), Be, and U. In addition, synchrotron-based analyses indicated that the Fe in these precipitates was bound largely in akageneite and/or schwertmannite. Under nearby farmlands, acid sulfate soils, developing on sulfide-bearing sediments and notorious for abundant export of metals, were identified and found to be widespread, deep (down to the sampling depth of 180 cm or deeper), and very acidic (minimum pH range for soil profiles: 2.8–3.5). In-between the farmland and wetland was a central drain that can act as both a transporter and sink of elements leached from the acid sulfate soils. In the drain had accumulated sediments that had strongly elevated concentrations of Al (15%), ∑REE (2725 mg/kg), Be (15 mg/kg), and U (37 mg/kg). Based on these data and features, a conceptual model for the areas was proposed. The acid sulfate soil releases several major and trace elements, including Fe2+, which are transported in acidic waters via drainpipes to the central drain where pH increases, causing extensive precipitation of Al, REEs, Be, and U as well as Fe2+ oxidation and formation of Fe oxyhydroxides and oxyhydroxysulfates. A substantial part of the Fe2+ in the drain water, however, remains in solution, so when this water is ultimately pumped to the wetland, large amounts of Fe2+ together with significant amounts of Al, REEs, Be, and U and transported to the wetland where Fe2+ is finally oxidized, precipitated and retained. Yet several other metals, leached abundantly from the acid sulfate soils (Mn, Zn, Ni, Co, and Cd), were not found in elevated levels in any of the recipients and therefore most likely have been transported beyond our sampling sites and has thus reached further outin the ecologically sensitive wetland.
  •  
17.
  • Shahabi-Ghahfarokhi, Sina, et al. (författare)
  • Removal and potential recovery of dissolved metals from acid sulfate soil drainage by spent coffee-grounds and dissolved organic carbon
  • 2022
  • Ingår i: Environmental Advances. - : Elsevier. - 2666-7657. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the reuse of spent coffee-grounds (SCGs) and the use of dissolved humic acid (DHA) to remediate acid sulfate (AS) soil drainage using adsorption and precipitation experiments, with changing pH,weight/volume, and concentrations (mg/L of dissolved organic carbon). In addition, this study aims to extend the usability of the SCGs, after being reacted with AS soil drainage, by identifying the potential recovery of incinerated SCGs from the ash of the SCGs produced incineration. As compared to DHA, the SCGs had greater efficiency in removing metals, such as Al (98%), Ca (96%), Co (94%), Fe (88%), Mn (100%), Ni (93%), and Zn (96%). However, the removal of Fe was significantly reduced when higher weight/volume of SCGs were introduced. In addition, SCGs could not bind sulfur, while DHA had removed up to 25% of S from the solution.This suggests the simultaneous use of SCGs and DHA could restrict the formation of problematic Fe(III) secondary compounds (e.g., schwertmannite/akaganeite) which are problematic in some AS soil settings. The results show that Co (69%), Ni (58%), Mn (60%), Fe (59%), Zn (55%), and Al (34%) had the highest recovery percentage by sequential chemical extraction, respectively. The recovery of metals, as well as the removal of dissolved metals from the drainage water, illustrates the effectiveness of the proposed approach for SCGs reuse.
  •  
18.
  • Shahabi-Ghahfarokhi, Sina, et al. (författare)
  • The response of metal mobilization and redistribution to reoxygenation in Baltic Sea anoxic sediments
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 837
  • Tidskriftsartikel (refereegranskat)abstract
    • To bring life back to anoxic coastal and sea basins, reoxygenation of anoxic/hypoxic zones has been proposed. This research focuses on the metals released during the oxidization of sediments from two locations in the anoxic Eastern Gotland Basin under a laboratory-scale study. Triplicate experimental cores and reference cores were collected from the North and South Eastern Gotland Basins. The oxygenation of the water column took place over a 96-hour experiment in a dark and 5 °C environment. In 12 and 24 hour intervals, the surface waters were exchanged and, over time, analyzed for pH, electroconductivity (EC), total organic carbon (TOC), soluble metal concentrations, and the top samples (0–10 cm) were analyzed with 3-step (E1: water-soluble, E2: exchangeable, and E3: organic-bound) sequential chemical extraction (SCE). Results show stable pH and decreasing EC in the column waters. The EC indicates that metals are released in the initial phases (12 h) of reoxygenation for both sites. Arsenic, Ba, Co, Mn, Rb, U, K, Sr, and Mo are released into the water column during the 96 hour experiment, and based on the calculations for the entire East Gotland Basin, would mean 8, 50, 0.55, 734, 53, 27, 347,178, 3468, and 156 μg L−1 are released, respectively. Elements Mn, Mo, U, and As are released in higher concentrations during the experiment than previously measured in the Eastern Gotland Basin, which provides vital information for future proposed remediation and natural geochemical processes with their known environmental impacts. The SCE results show that redox-sensitive metals (Mn, U, and Mo) are released in the highest concentrations into the solution. The relationship between the highest released metals (beside redox-sensitive) into solution over the oxygenation and their initial abundant phase is noticed, where the smallest released concentrations belong to K < Rb < Sr in E2, and As
  •  
19.
  • Shilei, Yang, et al. (författare)
  • A review of carbon isotopes of phytoliths : implications for phytolith-occluded carbon sources
  • 2020
  • Ingår i: Journal of Soils and Sediments. - : Springer. - 1439-0108 .- 1614-7480. ; 20:4, s. 1811-1823
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Phytolith-occluded carbon (PhytOC) is mainly derived from the products of photosynthesis, which can be preserved in soils and sediments for hundreds-to-thousands of years due to the resilient nature of the amorphous phytolith silica. Therefore, stable and radioactive carbon (C) isotopes of phytoliths can be effectively utilized in paleoecological and archeological research. However, there still exists debate about the applicability of C isotopes of phytoliths, as a “two-pool” hypothesis to characterize PhytOC sources has been proposed, whereby a component of the PhytOC is derived from soil organic matter (SOM) absorbed through plant roots. Therefore, it is necessary to review this topic to better understand the source of PhytOC. Materials and method We introduce the stable and radioactive C isotopic compositions of PhytOC, present the impacts of different extraction methods on the study of PhytOC, and discuss the implications of these factors for determining the sources of PhytOC. Results and discussion Based on this review, we suggest that organic matter synthesized by photosynthesis is the main source of PhytOC. However, it is important to make clear whether and how SOM-derived C present in phytoliths influence the controversial “too-old” skew and isotopic fractionation. Conclusions Though the two-pool hypothesis has been proved by many researches, the carbon isotopes of phytoliths still have potential in paleoecology and archeology, because the main source is photosynthesis and many previous studies put forward the availability of these parameters. This review also shows that phytolith C isotopes may vary with different organic C compounds within phytoliths, which needs further study at the molecular scale. Different phytolith extraction methods can influence 14C dating results.
  •  
20.
  • Sjöberg, Susanne, et al. (författare)
  • Microbe-Mediated Mn Oxidation - A Proposed Model of Mineral Formation
  • 2021
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese oxides occur in a wide range of environmental settings either as coatings on rocks, sediment, and soil particles, or as discrete grains. Although the production of biologically mediated Mn oxides is well established, relatively little is known about microbial-specific strategies for utilizing Mn in the environment and how these affect the morphology, structure, and chemistry of associated mineralizations. Defining such strategies and characterizing the associated mineral properties would contribute to a better understanding of their impact on the local environment and possibly facilitate evaluation of biogenicity in recent and past Mn accumulations. Here, we supplement field data from a Mn rock wall deposit in the Ytterby mine, Sweden, with data retrieved from culturing Mn oxidizers isolated from this site. Microscopic and spectroscopic techniques are used to characterize field site products and Mn precipitates generated by four isolated bacteria (Hydrogenophaga sp., Pedobacter sp., Rhizobium sp., and Nevskia sp.) and one fungal-bacterial co-culture (Cladosporium sp.-Hydrogenophaga sp. Rhizobium sp.-Nevskia sp.). Two of the isolates (Pedobacter sp. and Nevskia sp.) are previously unknown Mn oxidizers. At the field site, the onset of Mn oxide mineralization typically occurs in areas associated with globular wad-like particles and microbial traces. The particles serve as building blocks in the majority of the microstructures, either forming the base for further growth into laminated dendrites-botryoids or added as components to an existing structure. The most common nanoscale structures are networks of Mn oxide sheets structurally related to birnessite. The sheets are typically constructed of very few layers and elongated along the octahedral chains. In places, the sheets bend and curl under to give a scroll-like appearance. Culturing experiments show that growth conditions (biofilm or planktonic) affect the ability to oxidize Mn and that taxonomic affiliation influences crystallite size, structure, and average oxidation state as well as the onset location of Mn precipitation.
  •  
21.
  • Song, Zhaoliang, et al. (författare)
  • High potential of stable carbon sequestration in phytoliths of China's grasslands
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:8, s. 2736-2750
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytolith carbon (C) sequestration plays a key role in mitigating global climate change at a centennial to millennial time scale. However, previous estimates of phytolith-occluded carbon (PhytOC) storage and potential in China's grasslands have large uncertainties mainly due to multiple data sources. This contributes to the uncertainty in predicting long-term C sequestration in terrestrial ecosystems using Earth System Models. In this study, we carried out an intensive field investigation (79 sites, 237 soil profiles [0-100 cm], and 61 vegetation assessments) to quantify PhytOC storage in China's grasslands and to better explore the biogeographical patterns and influencing factors. Generally, PhytOC production flux and soil PhytOC density in both the Tibetan Plateau and the Inner Mongolian Plateau had a decreasing trend from the Northeast to the Southwest. The aboveground PhytOC production rate in China's grassland was 0.48 x 10(6) t CO2 a(-1), and the soil PhytOC storage was 383 x 10(6) t CO2. About 45% of soil PhytOC was stored in the deep soil layers (50-100 cm), highlighting the importance of deep soil layers for C stock assessments. Importantly, the Tibetan Plateau had the greatest contribution (more than 70%) to the PhytOC storage in China's grasslands. The results of multiple regression analysis indicated that altitude and soil texture significantly influenced the spatial distribution of soil PhytOC, explaining 78.1% of the total variation. Soil phytolith turnover time in China's grasslands was mainly controlled by climatic conditions, with the turnover time on the Tibetan Plateau being significantly longer than that on the Inner Mongolian Plateau. Our results offer more accurate estimates of the potential for phytolith C sequestration from ecological restoration projects in degraded grassland ecosystems. These estimates are essential to parameterizing and validating global C models.
  •  
22.
  • Wu, Lele, et al. (författare)
  • Organic matter composition and stability in estuarine wetlands depending on soil salinity
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 945
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral -associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM ( > 70 %) and increased with salinity (70 % -76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 % - 81 %) and N (52 % -82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 % -64 %) and N pool (8.6 % -59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
  •  
23.
  • Wu, Yuntao, et al. (författare)
  • Climatic controls on stable carbon and nitrogen isotope compositions of temperate grasslands in northern China
  • 2023
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 491, s. 133-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The natural abundances of stable carbon (C) and nitrogen (N) isotopes (delta C-13 and delta N-15) are extensively used to indicate the C and N biogeochemical cycles at large spatial scales. However, the spatial patterns of delta C-13 and delta N-15 in plant-soil systems of grasslands in northern China and their main driving factors across regional climatic gradient are still not well understood. Methods We measured plant and soil delta C-13 and delta N-15 compositions as well as their associated environmental factors across 2000 km climatic gradient (-0.2 to 9 degrees C; 152 to 502 mm) in grasslands of northern China. Results The soil delta C-13 and delta N-15 values in surface were lower than those in bottom for temperate typical steppe but had no significant differences for temperate meadow steppe and temperate desert steppe. Soil delta C-13 values declined with increasing soil organic carbon (SOC) but increased as mean annual temperature (MAT). These changes were attributed to the microbial decomposition rate. The delta N-15 values in soil and plant were negatively correlated with MAT and mean annual precipitation (MAP), which were mainly related to the low soil organic matter mineralization rate and the shift of dominant species from C-4 to C-3. Conclusions Our results indicate the spatial patterns and different influencing factors on delta C-13 and delta N-15 values along the climatic gradient in grasslands of northern China. The findings will provide scientific references for future research on the C and N biogeochemical cycles of temperate grasslands.
  •  
24.
  • Wu, Yuntao, et al. (författare)
  • Silicon promotes biomass accumulation in Phragmites australis under waterlogged conditions in coastal wetland
  • 2024
  • Ingår i: Plant and Soil. - : Springer Nature. - 0032-079X .- 1573-5036.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Previous studies have shown that silicon (Si) can affect plant growth and yield by regulating the availability of other nutrients. However, the mechanisms by which Si affects plant biomass accumulation in coastal wetlands are not well explored. Methods We conducted a sampling campaign across the whole growing season of Phragmites australis under waterlogging and drought conditions in coastal wetland, and quantified the effects of Si availability on biomass accumulation. Results Compared with drought condition, the waterlogged condition improved the utilization efficiency of nitrogen (N) and phosphorus (P) of P. australis regulated by higher Si contents. Meanwhile, the increased Si contents promoted the utilization of N and P in leaf, suggesting that the increase in Si contents optimizes the photosynthetic process. Lignin contents in P. australis decreased with the increasing Si contents, which confirmed that Si can replace structural carbon components. In addition, principal component analysis (PCA) showed aboveground biomass accumulation of P. australis was synchronized with Si accumulation, indicating that Si was a beneficial element to promote biomass accumulation. Conclusions Our study implies that increasing Si availability is conducive to biomass accumulation of P. australis in waterlogged wetlands, which will provide important scientific references for the management of coastal wetland ecosystem and the increase of global 'blue carbon' sequestration.
  •  
25.
  • Xia, Shaopan, et al. (författare)
  • Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:2, s. 417-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite increasing recognition of the critical role of coastal wetlands in mitigating climate change, sea‐level rise, and salinity increase, soil organic carbon (SOC) sequestration mechanisms in estuarine wetlands remain poorly understood. Here, we present new results on the source, decomposition, and storage of SOC in estuarine wetlands with four vegetation types, including single Phragmites australis (P, habitat I), a mixture of P. australis and Suaeda salsa (P + S, habitat II), single S. salsa (S, habitat III), and tidal flat (TF, habitat IV) across a salinity gradient. Values of δ13C increased with depth in aerobic soil layers (0–40 cm) but slightly decreased in anaerobic soil layers (40–100 cm). The δ15N was significantly enriched in soil organic matter at all depths than in the living plant tissues, indicating a preferential decomposition of 14N‐enriched organic components. Thus, the kinetic isotope fractionation during microbial degradation and the preferential substrate utilization are the dominant mechanisms in regulating isotopic compositions in aerobic and anaerobic conditions, respectively. Stable isotopic (δ13C and δ15N), elemental (C and N), and lignin composition (inherited (Ad/Al)s and C/V) were not completely consistent in reflecting the differences in SOC decomposition or accumulation among four vegetation types, possibly due to differences in litter inputs, root distributions, substrate quality, water‐table level, salinity, and microbial community composition/activity. Organic C contents and storage decreased from upstream to downstream, likely due to primarily changes in autochthonous sources (e.g., decreased onsite plant biomass input) and allochthonous materials (e.g., decreased fluvially transported upland river inputs, and increased tidally induced marine algae and phytoplankton). Our results revealed that multiple indicators are essential to unravel the degree of SOC decomposition and accumulation, and a combination of C:N ratios, δ13C, δ15N, and lignin biomarker provides a robust approach to decipher the decomposition and source of sedimentary organic matter along the river‐estuary‐ocean continuum.
  •  
26.
  • Xia, Shaopan, et al. (författare)
  • Silicon accumulation controls carbon cycle in wetlands through modifying nutrients stoichiometry and lignin synthesis of Phragmites australis
  • 2020
  • Ingår i: Environmental and Experimental Botany. - : Elsevier. - 0098-8472 .- 1873-7307. ; 175, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon (Si) is one of the most abundant elements in the Earth’s crust but its role in governing the biogeochemicalcycling of other elements remains poor understood. There is a paucity of information on the role of Si in wetlandplants, and how this may alter wetland C production and storage. Therefore, this study investigated Si distribution,nutrient stoichiometry and lignin abundance in Phragmites australis from a wetland system in China tobetter understand the biogeochemical cycling and C storage. Our data show that Si content (ranging between0.202% to 6.614%) of Phragmites australis is negatively correlated with C concentration (38.150%–47.220%).Furthermore, Si content was negatively antagonistically related to the concentration of lignin-derived phenols inthe stem (66.763–120.670 mg g-1 C) and sheath (65.400–114.118 mg g-1 C), but only a weak relationship wasobserved in the leaf tissue (36.439–55.905 mg g-1 C), which is relevant to the photosynthesis or stabilizationfunction of the plant tissues. These results support the notion that biogenic Si (BSi) can substitute lignin as astructural component, due to their similar eco-physiological functions, reduces costs associated with ligninbiosynthesis. The accumulation of BSi increased total biomass C storage and nutrient accumulation due togreater productivity of Phragmites australis. On the other hand, BSi regulated litter composition and quality (e.g.,nutrient stoichiometry and lignin) that provide a possibility for the factors affecting litter decomposition. Thuscompeting processes (i.e., biomass quantity vs quality) can be influenced by Si cycling in wetlands.
  •  
27.
  • Xia, Shaopan, et al. (författare)
  • Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:20, s. 6065-6085
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha(-1), with higher values in mid-latitude regions (25-30 degrees N) compared with those in both low- (20 degrees N) and high-latitude (38-40 degrees N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha(-1) following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha(-1) following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 x 10(6) Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.
  •  
28.
  • Xie, S., et al. (författare)
  • A re-assessment of metal pollution in the Dexing mining area in Jiangxi province, China : current status, hydro-geochemical controls, and effectiveness of remediation practices
  • 2022
  • Ingår i: International Journal of Environmental Science and Technology. - : Springer Nature. - 1735-1472 .- 1735-2630. ; 19, s. 10707-10722
  • Tidskriftsartikel (refereegranskat)abstract
    • This study re-assess the environmental impacts of the Dexing copper mine (the largest open-pit copper mine in Asia) on the Lean river and its two tributaries (the Dawu river and Jishui river) in the Jiangxi province, China, with particular focus on metal pollution as well as the effectiveness and side-effects of remediation activities. Results show that the Dawu river and its mixing zone with the Lean river were still heavily influenced by acid mine drainage (AMD) and loaded with elevated levels of metals, in particular Mn, Ni, and Al whose concentrations were frequently above the health-based guideline values. Manganese and Ni in the AMD-impacted waters were predicted to occur as free ions or sulfate and carbonate complexes, and thus highly-toxic to living organisms. Although Al in the AMD-impacted waters was predicted to exist largely as colloidal hydroxides with low bioavailability, abundant formation of such nano-sized particles could impair the respiratory and circulatory systems of aquatic macro-invertebrates. The integration and comparison of the results from the current and previous studies show that the concentrations of several metals (Cu, Zn, and Cd) in the Dawu river decreased significantly after 2011-2012, during which several remediation practices were implemented (e.g., AMD neutralization, excavation of contaminated sediments in impounded rivers, and rehabilitation of mine tailings and open-pit slopes). This provides evidence that these remediation practices have effectively limited the dispersion of metals from the mining area. However, AMD neutralization greatly enhanced the release of sulfate, making the mining area an even more important sulfate source.
  •  
29.
  • Yang, Shilei, et al. (författare)
  • Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 657, s. 811-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Grassland ecosystems play an important role in the global terrestrial silicon (Si) cycle, and Si is a beneficial elementand structural constituent for the growth of grasses. In previous decades, grasslands have been degradedto different degrees because of the drying climate and intense human disturbance. However, the impact of grasslanddegradation on the distribution and bioavailability of soil Si is largely unknown. Here, we investigated vegetationand soil conditions of 30 sites to characterize different degrees of degradation for grasslands in the agropastoralecotone of northern China. We then explored the impact of grassland degradation on the distributionand bioavailability of soil Si, including total Si and four forms of noncrystalline Si in three horizons (0–10,10–20 and 20–40 cm) of different soil profiles. The concentrations of noncrystalline Si in soil profiles significantlydecreased with increasing degrees of degradation, being 7.35 ± 0.88 mg g−1, 5.36 ± 0.39 mg g−1, 3.81 ±0.37 mg g−1 and 3.60±0.26 mg g−1 in non-degraded, lightly degraded, moderately degraded and seriously degradedgrasslands, respectively. Moreover, the storage of noncrystalline Si decreased from higher than 40 t ha−1to lower than 23 t ha−1. The corresponding bioavailability of soil Si also generally decreased with grassland degradation.These processes may not only affect the Si pools and fluxes in soils but also influence the Si uptake in plants. We suggest that grassland degradation can significantly affect the global grassland Si cycle. Grasslandmanagement methods such as fertilizing and avoiding overgrazing can potentially double the content and storageof noncrystalline Si in soils, thereby enhancing the soil Si bioavailability by N17%.
  •  
30.
  • Yang, Xiaomin, et al. (författare)
  • Phytolith-rich straw application and groundwater table management over 36 years affect the soil-plant silicon cycle of a paddy field
  • 2020
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 454, s. 343-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims Silicon (Si) deficiency is a major constraint on rice production. The objective of this study was to evaluate the long-term influence of phytolith-rich straw return and groundwater table management on labile Si fractions in paddy soil and subsequent plant Si uptake. Methods A field experiment was conducted over 36 years in subtropical China with different application doses of phytolith-rich straw and a groundwater table of either 20 or 80 cm. An optimized sequential chemical extraction procedure allowed us to determine labile Si fractions, represented by CaCl2-Si, Acetic-Si, H2O2-Si, Oxalate-Si, and Na2CO3-Si. Additional analyses included the determination of amorphous silica particles in soil, phytoliths in supplied straw, Si in planted rice straw, and the dissolution rate of phytoliths extracted from supplied straw. Results Long-term application of phytolith-rich straw significantly increased the H2O2-Si and Na2CO3-Si contents. The CaCl2-Si (5.21-7.91 mg kg(- 1)), H2O2-Si (50.0-72.4 mg kg(- 1)) and Na2CO3-Si (3.33-4.60 g kg(- 1)) contents were positively correlated with soil organic carbon. The Si content (13.6-28.9 g kg(-& x200d;1)) in planted rice straw significantly (p < 0.05) increased with the application dose of phytolith-rich straw under both groundwater tables. This effect was significantly (p < 0.05) greater under 80 cm groundwater table than under 20 cm groundwater table for matching straw amendments. Conclusions This study indicates that long-term application of phytolith-rich straw and groundwater management significantly increase soil Si bioavailability by promoting accumulation of organic matter and phytoliths, and enhancing the soil-plant Si cycle.
  •  
31.
  • Yang, Xiaomin, et al. (författare)
  • Quantification of different silicon fractions in broadleaf and conifer forests of northern China and consequent implications for biogeochemical Si cycling
  • 2020
  • Ingår i: Geoderma. - : Elsevier. - 0016-7061 .- 1872-6259. ; 361, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The terrestrial biogeochemical silicon (Si) cycle significantly contributes to maintaining the functions and sustainability of terrestrial ecosystems. Over the short term, the biogeochemical Si cycle can be strongly influenced by dissolved Si, organic bound Si, Si adsorbed to pedogenic oxides/hydroxides, and biogenic and pedogenic amorphous Si. However, quantitative studies about these relatively soluble Si fractions are rare. In this study, we quantified different Si fractions in the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm and 40–50 cm soil layers of broadleaf forests (Betula forest and Quercus forest) and conifer forests (Larix forest and Pinus forest) in northern China using a sequential chemical extraction scheme optimized for these Si fractions. The results showed that the total Si (Sit) in the soil layers consisted of 97.7–98.5% crystalline Si (Sicry) and 1.5–2.3% non-crystalline Si (Sinoncry) fractions. Within the Sinoncry fraction, the proportions of dissolved Si (Sidis), organic matter bound Si (Siorg), pedogenic oxides/hydroxides chemisorbed Si (Sisorb), and amorphous Si (Siamor) were 3.4–6.7%, 5.5–8.9%, 6.3–8.5%, and 77.7–84.8%, respectively. Although the Sidis fraction was the least abundant component, it is at the center of the interconversion processes among the different Sinoncry fractions. The Siamor fraction was the largest component of Sinoncry and was composed of 37.7–71.9% biogenic amorphous Si (Sibio-amor) and 28.1–62.3% pedogenic amorphous Si (Siped-amor). Our study indicated that i) Siped-amor fraction is more easily influenced by soil pH comparing to Sibio-amor fraction; ii) the Sibio-amor fraction contributes more to the biogeochemical Si cycle in broadleaf forests, whereas the Siped-amorfraction contributes more in conifer forests; and iii) soil pH, soil organic matter, and plant community differences can influence the vertical distribution of the different Sinoncry fractions and thus affect the multiple transformation processes among these Si fractions in studied forests.
  •  
32.
  • Yang, Xiaoming, et al. (författare)
  • Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China
  • 2021
  • Ingår i: Geoderma. - : Elsevier. - 0016-7061 .- 1872-6259. ; 401
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon (Si) is beneficial for rice health and production by alleviating various biotic and abiotic stresses. However, the continual export of grain off-farm may result in Si deficiency for rice plants. The current levels of plant available Si (PASi) in rice paddies in China remain unclear, as do the factors that control PASi content in these soils. We conducted a nationwide sampling campaign across the paddy fields of China between 2016 and 2019, and used calcium chloride extractable Si (Si-CaCl2) and buffered acetate extractable Si (Si-NaAc, pH = 4) to quantify PASi. We show that Si-CaCl2 pool was mainly influenced by mean annual temperature (MAT), soil salinity, soil organic carbon (SOC), mean annual precipitation (MAP), and soil pH, suggesting both pedological and biological control mechanisms. However, the Si-NaAc pool was influenced most by soil pH, MAT and MAP, implying pedological control. Compared to data from the 1990s, the Si-NaAc content decreased by 14.1% on a national scale with an annual decline rate of 0.54%. Based on our investigation, at least 65% of China’s paddy fields are deficient in PASi, which is an increase in area of ~15% over the last 20 years. The principal regions where PASi deficiency was recorded are mainly located in southern China, with the levels of Si deficiency lowering as the paddy fields are located further north. The continual off-site removal of PASi from rice grain and straw will need to be addressed through the use of Si-fertilizers, including organic amendments, to maintain a productive and sustainable rice industry in China.
  •  
33.
  • Yu, Changxun, 1983-, et al. (författare)
  • A Combined X-ray Absorption and Mössbauer Spectroscopy Study on Fe Valence and Secondary Mineralogy in Granitoid Fracture Networks : Implications for Geological Disposal of Spent Nuclear Fuels
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:5, s. 2832-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • Underground repository in crystalline bedrock is a widely accepted solution for long-term disposal of spent nuclear fuels. During future deglaciations, meltwater will intrude via bedrock fractures to the depths of future repositories where O2 left in the meltwater could corrode metal canisters and enhance the migration of redox-sensitive radionuclides. Since glacial meltwater is poor in reduced phases, the quantity and (bio)accessibility of minerogenic Fe(II) in bedrock fractures determine to what extent O2 in future meltwater can be consumed. Here, we determined Fe valence and mineralogy in secondary mineral assemblages sampled throughout the upper kilometer of fractured crystalline bedrock at two sites on the Baltic Shield, using X-ray absorption and Mössbauer spectroscopic techniques that were found to deliver matching results. The data point to extensive O2-consuming capacity of the bedrock fractures, because Fe(II)-rich phyllosilicates were abundant and secondary pyrite was dispersed deep into the bedrock with no overall increase in Fe(II) concentrations and Fe(II)/Fe(III) proportions with depth. The results imply that repeated Pleistocene deglaciations did not cause a measurable decrease in the Fe(II) pool. In surficial fractures, largely opened during glacial unloading, ferrihydrite and illite have formed abundantly via oxidative transformation of Fe(II)-rich phyllosilicates and recently exposed primary biotite/hornblende.
  •  
34.
  • Yu, Changxun, 1983-, et al. (författare)
  • A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial reactions and effects of fulvic acid complexation
  • 2018
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 483, s. 304-311
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated interfacial reactions between aqueous Ce(III) and two synthetic nanosized Mn (hydr-) oxides (manganite: gamma-MnOOH, and vernadite: delta-MnO2) in the absence and presence of Nordic Lake fulvic acid (NLFA) at circumneutral pH by batch experiments and cryogenic X-ray photoelectron spectroscopy (XPS). The surfaces of manganite and vernadite were negatively charged (XPS-derived loadings of (Na+ K)/Cl > 1) and loaded with 0.42-4.33 Ce ions nm(-2). Manganite stabilized Ce-oxidation states almost identical to those for vernadite (approximately 75% Ce(IV) and 25% Ce(III)), providing the first experimental evidence that also a Mn (III) phase (manganite) can act as an important scavenger for Ce(IV) and thus, contribute to the decoupling of Ce from its neighboring rare earth elements and the development of Ce anomaly. In contrast, when exposed to Ce (III)-NLFA complexes, the oxidation of Ce by these two Mn (hydr-) oxides was strongly suppressed, suggesting that the formation of Ce(III) complexes with fulvic acid can stabilize Ce(III) even in the presence of oxidative Mn-oxide surfaces. The experiments also showed that Ce(III) complexed with excess NLFA was nearly completely removed, pointing to a strong preferential sorption of Ce(III)-complexed NLFA over free NLFA. This finding suggests that the Ce(III)-NLFA complexes were most likely sorbed by their cation side, i.e. Ce(III) bridging between oxide groups on the Mn (hydr-) oxides and negatively-charged functional groups in NLFA. Hence, Ce(III) was in direct contact with the oxidative manganite and vernadite but despite that not oxidized. An implication is that in organic-rich environments there may be an absence of Ce(IV) and Ce anomaly despite otherwise favorable conditions for Ce(III) oxidation.
  •  
35.
  • Yu, Changxun, 1983-, et al. (författare)
  • Biogeochemical cycling of iron (hydr-)oxides and its impact on organic carbon turnover in coastal wetlands : A global synthesis and perspective
  • 2021
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 218
  • Forskningsöversikt (refereegranskat)abstract
    • Coastal wetlands host large and dynamic reservoirs of organic carbon (C) and are also biogeochemical hotspots for a wide range of Fe (hydr-)oxides with different chemical reactivities, properties, and functions. The cycling of these iron (hydr-)oxides is closely coupled to that of organic C, which in turn strongly influences the magnitude and dynamics of organic C turnover in these ecosystems. This review synthesizes and summarizes current knowledge of distribution, turnover, and controls of Fe (hydr-)oxides, as well as their ecological roles and impacts on organic C turnover in coastal wetland ecosystems globally. Regional hydro-geochemical processes and anthropogenic activities in the uplands as well as soil texture exert a first-order control on the abundance and distribution of Fe (hydr-)oxides in coastal wetland soils, while the activities of plant roots and macro-organisms act as important biological drivers for the formation, transformation, and turnover of Fe (hydr-)oxides as well as associated organic C in both rhizosphere/burrows and bulk soils. The reported rates of dissimilatory Fe reduction (DFeR) are correlated with incubation temperature and the sizes of reactive Fe(III) phases. However, the contributions of DFeR to total anaerobic carbon oxidation were found to be correlated only with the size of reactive Fe(III) pools, meaning that all the identified processes contributing to the accumulation and formation of Fe hydroxides could increase the importance of the DFeR-dominated respiratory pathway and suppress sulfate reduction and methanogenesis. Additionally, Fe plaques dominated by amorphous Fe hydroxides are formed and cycled in close interaction with the activities of wetland plant roots, and likely provide several important ecological functions and contribute to maintaining high levels of plant productivity in coastal wetlands under different environmental stresses. The features and findings presented in this review not only contribute to an improved understanding of the biogeochemical cycle and ecological roles of Fe (hydr-)oxides in coastal wetlands, but also provide a basis for future studies on some highlighted key research areas. Such future studies will further increase our ability to understand and predict how the size, stability, and turnover of Fe (hydr-)oxides and organic C in coastal wetlands will respond to and affect global climate change.
  •  
36.
  • Yu, Changxun, 1983-, et al. (författare)
  • Cerium Sequestration in Fractures in the Upper Kilometer of Granitoids, SE, Sweden
  • 2013
  • Ingår i: Mineralogical magazine. - : Cambridge University Press. - 0026-461X .- 1471-8022. ; 77:5, s. 2568-2568
  • Tidskriftsartikel (refereegranskat)abstract
    • This study seeks to define geochemical processes governing the accumulation and sequestration of Ce in granitoidic fractures down to >700 m depth, revealing past intrusions of oxygenated waters. The fracture coatings (secondary mineral precipitates in open fractures) gathered from the study area (Laxemar, SE Sweden) are characterized by high levels of Ce (Fig. 1b) compared to host rock cocentration (average: 86 ppm, n=65) and show a striking feature of distinct positive Ce anomalies (CeWN*=1.21-3.95, n=8) in the uppermost 20 m of the bedrock (Fig. 1a). Cerium and Mn X-ray absorption spectroscopy (XAS) of selected fracture coatings, together with existing data (e.g. fracture mineralogy and groundwater chemistry), indicate that: (1) Ce(IV) occurs down to c.a. 70 m depth and is exclusively associated with Mn oxides which occur as todorokite and triclinic birnessite as suggested by Mn EXAFS spectra; (2) Since Mn is largely speciated as Mn2+ in the present bedrock groundwaters, the Ce(IV)-bearing Mn oxides most probably resulted from oxidative weathering of wall rock and fracture coating minerals when oxygenated waters intruded into the bedrock (down to several hundred meters depth) during deglacation events (>13000 BP); (3) Unlike other samples, clear XAS features of a poorly-crystalline hexagonalbirnessite-like phase and larger proportion of aqueous Mn2+ were observed in the sample with strikingly positive Ce anomaly (CeWN* = 3.95) (Fig. 1b) at the depth of 0.87 m, suggesting an ongoing dynamic accumulatinon of Ce(IV), i.e. dissolution and reprecipiation of Mn oxides while Ce(IV)- enriched residue largely remained.
  •  
37.
  • Yu, Changxun, 1983-, et al. (författare)
  • Geochemical controls on dispersion of U and Th in Quaternary deposits, stream water, and aquatic plants in an area with a granite pluton
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 663, s. 16-28
  • Tidskriftsartikel (refereegranskat)abstract
    • The weathering of U and/or Th rich granite plutons, which occurs worldwide, may serve as a potentially important, but as yet poorly defined source for U and Th in (sub-)surface environments. Here, we assessed the impact of an outcrop of such granite (5 km in diameter) and its erosional products on the distribution of U and Th in four nemo-boreal catchments. The results showed that (i) the pluton was enriched in both U and Th; and (ii) secondary U and Th phases were accumulated by peat/gyttja and in other Quaternary deposits with high contents of organic matter. Movement of the ice sheet during the latest glaciation led to dispersal of U- and Th-rich materials eroded from the pluton, resulting in a progressive increase in dissolved U and Th concentrations, as well as U concentrations in aquatic plants with increasing proximity to the pluton. The accumulation of U in the aquatic plants growing upon the pluton (100–365 mg kg−1, dry ash weight) shows that this rock represents a long-term risk for adjacent ecosystems. Dissolved pools of U and Th were correlated with those of dissolved organic matter (DOM) and were predicted to largely occur as organic complexes. This demonstrates the importance of DOM in the transport of U and Th in the catchments. Large fractions of Ca2UO2(CO3)30(aq) were modeled to occur in the stream with highest pH and alkalinity and thus, explain the strongly elevated U concentrations and fluxes in this particular stream. In future climate scenarios, boreal catchments will experience intensified runoff and warmer temperature that favor the production of hydrologically accessible DOM and alkalinity. Therefore, the results obtained from this study have implications for predicting the distribution and transport of Th and U in boreal catchments, especially those associated with U and/or Th rich granite plutons.
  •  
38.
  • Yu, Changxun, 1983-, et al. (författare)
  • Iron speciation and valence in the upper 1 km of fractured crystalline bedrock on the Baltic shield
  • 2017
  • Ingår i: Goldschmidt2017 Abstracts.
  • Konferensbidrag (refereegranskat)abstract
    • The widespread networks of open water-conducting fractures in crystalline bedrock are covered by a variety of Fe-bearing minerals. Quantitative information on Fe mineralogy and valence of these minerals is of great importance not only in constraining the biogeochemical cycle of Fe and other related elements in this largely unexplored space, but also in evaluating the mineralogical capacity to reduce oxygen which is one of the key issues in the risk assessment of nuclear waste repositories. Here, we studied Fe mineralogy and valence in fracture coatings, fresh rocks and altered rocks in the upper 1 km of fractured crystalline bedrock at two sites (Laxemar and Forsmark areas, Sweden) on the Baltic shield. Fe3+/∑Fe ratios in these materials were quantified based on the centroid position of the pre-edge feature on Fe XANES spectra, while the speciation of Fe was predicted by reconstructing the sample EXFAS spectra using a linear combination of a large dataset of reference spectra collected previously[1] and in this study. The results were compared with Mössbauer spectra. The fresh and altered rocks showed no systematic difference in Fe3+/∑Fe ratio, indicating that past hydrothermal activities (red-staining on fracture wall-rock) did not lead to a reduction in reducing capacity within the fracture networks. The fracture coatings from the Forsmark area are of clear hydrothermal character (as indicated by an abundance of hematite, hornblende and muscovite) and have not experienced the same degree of low-T oxidative weathering as the samples from the Laxemar area having frequent and abundant illite and ferrihydrite. However, Fe3+/∑Fe ratios of the fracture coatings from the two areas showed similar features, including no depth trend and a similar variability from 0.24-0.85 and 0.12-0.71 which are overall larger than the fresh and altered rocks. This suggests that regional geological events can have a significant impact on the speciation of Fe, but not Fe valence.
  •  
39.
  • Yu, Changxun, 1983-, et al. (författare)
  • Iron‑sulfur geochemistry and acidity retention in hydrologically active macropores of boreal acid sulfate soils : Effects of mitigation suspensions of fine-grained calcite and peat
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 856:Part 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Acid sulfate soils discharge large amounts of sulfuric acid along with toxic metals, deteriorating water quality and ecosystem health of recipient waterbodies. There is thus an urgent need to develop cost-effective and sustainable measures to mitigate the negative effects of these soils. In this study, we flushed aseptically-prepared MQ water (reference) or mitigation suspensions containing calcite, peat or a combination of both through 15-cm-thick soil cores from an acid sulfate soil field in western Finland, and investigated the geochemistry of Fe and S on the surfaces of macropores and in the solid columnar blocks (interiors) of the soil columns. The macropore surfaces of all soil columns were strongly enriched in total and HCl-extractable Fe and S relative to the interiors, owing to the existence of abundant Fe oxyhydroxysulfates (schwertmannite and partly jarosite) as yellow-to-brownish surface-coatings. The dissolution/hydrolysis of Fe oxyhydroxysulfates (predominantly jarosite) on the macropore surfaces of the reference columns, although being constantly flushed, effectively buffered the permeates at pH close to 4. These results suggest that Fe oxyhydroxysulfates accumulated on the macropore surfaces of boreal acid sulfate soils can act as long-lasting acidification sources. The treatments with mitigation suspensions led to a (near-)complete conversion of jarosite to Fe hydroxides, causing a substantial loss of S. In contrast, we did not observe any recognizable evidence indicating transformation of schwertmannite. However, sulfate sorbed by this mineral might be partially lost through anion-exchange processes during the treatments with calcite. No Fe sulfides were found in the peat-treated columns. Since Fe sulfides can support renewed acidification events, the moderate mineralogical changes induced by peat are desirable. In addition, peat materials can act as toxic-metal scavengers. Thus, the peat materials used here, which is relatively cheap in the boreal zone, is ideal for remediating boreal acid sulfate soils and other similar jarosite-bearing soils.
  •  
40.
  • Yu, Changxun, 1983-, et al. (författare)
  • Manganese cycling and transport in boreal estuaries impacted by acidic Mn-rich drainage
  • 2024
  • Ingår i: GEOCHIMICA ET COSMOCHIMICA ACTA. - : Elsevier. - 0016-7037 .- 1872-9533 .- 0046-564X. ; 365, s. 136-157
  • Tidskriftsartikel (refereegranskat)abstract
    • As critical transition zones between the land and the sea, estuaries are not only hotspots of hydrogeochemical and microbial processes/reactions, but also play a vital role in processing and transferring terrestrial fluxes of metals and nutrients to the sea. This study focused on three estuaries in the Gulf of Bothnia. All of them expe-rience frequent inputs of acidic and Mn/metal-rich creek waters due to flushing of acid sulfate soils that are widespread in the creeks catchments. Analyzing existing long-term water chemistry data revealed a strong sea-sonal variation of Mn loads, with the highest values in spring (after snow melt) and autumn (after heavy rains). We sampled surface waters, suspended particulate matter (SPM), and sediments from the estuarine mixing zones and determined the loads and solid-phase speciation of Mn as well as the composition and metabolic potentials of microbial communities. The results showed that the removal, cycling, and lateral transport of Mn were governed by similar phases and processes in the three estuaries. Manganese X-ray absorption spectroscopy data of the SPM suggested that the removal of Mn was regulated by silicates (e.g., biotite), organically complexed Mn(II), and MnOx (dominated by groutite and phyllomanganates). While the fractional amounts of silicate-bound Mn(II) were overall low and constant throughout the estuaries, MnOx was strongly correlated with the Mn loadings of the SPM and thus the main vector for the removal of Mn in the central and outer parts of the estuaries, along with organically complexed Mn(II). Down estuary, both the fractional amounts and average Mn oxidation state of the MnOx phases increased with (i) the total Mn loads on the SPM samples and (ii) the relative abundances of several potential Mn-oxidizing bacteria (Flavobacterium, Caulobacter, Mycobacterium, and Pedobacter) in the surface waters. These features collectively suggested that the oxidation of Mn, probably mediated by the potential Mn-oxidizing microorganisms, became more extensive and complete towards the central and outer parts of the es-tuaries. At two sites in the central parts of one estuary, abundant phyllomanganates occurred in the surface sediments, but were converted to surface-sorbed Mn(II) phases at deeper layers (>3-4 cm). The occurrence of phyllomanganates may have suppressed the reduction of sulfate in the surface sediments, pushing down the methane sulfate transition zone that is typically shallow in estuarine sediments. At the outermost site in the estuary, deposited MnOx were reduced immediately at the water-sediment interface and converted most likely to Mn carbonate. The mobile Mn species produced by the Mn reduction processes (e.g., aqueous Mn(II) and ligand complexed Mn(III)) could partly diffuse into the overlying waters and, together with the estuarine Mn loads carried by the surface waters, transfer large amounts of reactive Mn into open coastal areas and subsequently contribute to Mn shuttling and inter-linked biogeochemical processes over the seafloor. Given the widespread occurrence of acid sulfate soils and other sulfidic geological materials on many coastal plains worldwide, the identified Mn attenuation and transport mechanisms are relevant for many estuaries globally.
  •  
41.
  •  
42.
  • Yu, Changxun, 1983-, et al. (författare)
  • Micro-scale isotopic variability of low-temperature pyrite in fractured crystalline bedrock ― A large Fe isotope fractionation between Fe(II)aq/pyrite and absence of Fe-S isotope co-variation
  • 2019
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 522, s. 192-207
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assessed Fe-isotope ratio (56Fe/54Fe, expressed as δ56Fe relative to the IRMM-014 standard) variability and controls in pyrite that has among the largest reported S-isotope variability (maximum δ34S: 140‰). The pyrite occurs as fine-grained secondary crystals in fractures throughout the upper kilometer of granitoids of the Baltic Shield, and was analyzed here for δ56Fe by in situ secondary ion mass spectrometry (SIMS). Part of these pyrite crystals were picked from borehole instrumentation at depths of >400 m below sea level (m.b.s.l.), and thus are modern (known to have formed within 17 years) and can be compared with the δ56Fe of the source dissolved ferrous iron. The δ56Fe values of the modern pyrite crystals (−1.81‰ to +2.29‰) varied to a much greater extent than those of the groundwaters from which they formed (−0.48‰ to +0.13‰), providing strong field evidence for a large Fe isotope fractionation during the conversion of Fe(II)aq to FeS and ultimately to pyrite. Enrichment of 56Fe in pyrite relative to the groundwater was explained by equilibrium Fe(II)aq-FeS isotope fractionation, whereas depletion of 56Fe in pyrite relative to the groundwater was mainly the result of sulfidization of magnetite and kinetic isotopic fractionation during partial transformation of microsized FeS to pyrite. In many pyrite crystals, there is an increase in δ34S from crystal center to rim reflecting Rayleigh distillation processes (reservoir effects) caused by the development of closed-system conditions in the micro-environment near the growing crystals. A corresponding center-to-rim feature was not observed for the δ56Fe values. It is therefore unlikely that the groundwater near the growing pyrite crystals became progressively enriched in the heavy Fe isotope, in contrast to what has been found for the sulfur in sulfate. Other pyrite crystals formed following bacterial sulfate reduction in the time period of mid-Mesozoicum to Quaternary, had an almost identical Fe-isotope variability (total range: −1.50‰ to +2.76‰), frequency-distribution pattern, and relationship with δ34S as the recent pyrite formed on the borehole instrumentation. These features suggest that fundamental processes are operating and governing the Fe-isotope composition of pyrite crystals formed in fractured crystalline bedrock over large time scales.
  •  
43.
  •  
44.
  • Yu, Changxun, 1983-, et al. (författare)
  • Retention and transport of arsenic, uranium and nickel in a black shale setting revealed by a long-term humidity cell test and sequential chemica extractions
  • 2014
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 363, s. 134-144
  • Tidskriftsartikel (refereegranskat)abstract
    • The dispersion of acidic solutions with high levels of metals/metalloids, as a result of oxidative weathering of pyritic geomaterials, is a major environmental problem in areas where these materials are widely distributed and/or were historically mined. In this study, four types of materials encountered in an old black-shale mining area (unweathered black shale, weathered black shale, burnt black shale, and lime-mixed burnt black shale) were subjected to a long-term (up to 137 weeks) humidity cell test (HCT) combined with sequential chemical extractions (SCE), with the aim of examining geochemical controls on the release of Ni, U and As in this kind of pyritic settings. By combining the results of HCT and SCE as well as previously collected groundwater data, it is clearly shown that the degree of pyrite oxidation is the only major factor controlling the release of Ni, resulting in its highly elevated concentrations in acidic groundwaters. Although U followed a similar leaching pattern as observed for Ni and occurred abundantly in acidic groundwaters, a major decrease in the chemical fraction targeting exchangeable and carbonate phases, and a correlation of U concentrations with redox potential in groundwaters collectively suggest that the release of U was largely controlled by the solubilization of sorbed/carbonate U phases by oxidation to the highly soluble form (UO22+). As compared to the HCT, the SCE procedures used in this study delivered equally good estimates of Ni, U and S cumulatively leached, suggesting the strength of the SCE in terms of quantification of these elements during the weathering of pyritic geomaterials. Arsenic X-ray absorption near-edge structure spectroscopy shows that during the HCT (oxidation and leaching) of unweathered black shale, As was oxidized from its reduced form (having the oxidation state of -1 and most probably occurs as arsenian pyrite) to As(+5). Compared to the two cationic metals, As was released to a very limited extent and was not detectable in the leachates having pH between 6 and 3. This is because As was speciated exclusively as negatively-charged oxyanions in these leachates as predicted by MINTEQ modeling, thus was effectively attenuated by concurrently formed iron minerals. These minerals include mainly schwertmannite and K-jarosite as observed by SEM-EDS and also predicted by MINTEQ modeling. Elevated levels of As exclusively occurred in the groundwaters from one tube strongly impacted by seawater intrusion. This was regarded as a reflection of loosely-sorbed As oxyanions reliberated through ion exchange with seawater chloride. In this context, sea-level rise on a global scale as a potential driver for arsenic remobilization in low-lying coastal areas deserves further attention.
  •  
45.
  • Yu, Changxun, 1983-, et al. (författare)
  • Storage and Distribution of Organic Carbon and Nutrients in Acidic Soils Developed on Sulfidic Sediments : The Roles of Reactive Iron and Macropores
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58:21, s. 9200-9212
  • Tidskriftsartikel (refereegranskat)abstract
    • In a boreal acidic sulfate-rich subsoil (pH 3–4) developing on sulfidic and organic-rich sediments over the past 70 years, extensive brownish-to-yellowish layers have formed on macropores. Our data reveal that these layers (“macropore surfaces”) are strongly enriched in 1 M HCl-extractable reactive iron (2–7% dry weight), largely bound to schwertmannite and 2-line ferrihydrite. These reactive iron phases trap large pools of labile organic matter (OM) and HCl-extractable phosphorus, possibly derived from the cultivated layer. Within soil aggregates, the OM is of a different nature from that on the macropore surfaces but similar to that in the underlying sulfidic sediments (C-horizon). This provides evidence that the sedimentary OM in the bulk subsoil has been largely preserved without significant decomposition and/or fractionation, likely due to physiochemical stabilization by the reactive iron phases that also existed abundantly within the aggregates. These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the short run.
  •  
46.
  • Zhang, Xiaodong, et al. (författare)
  • Storage of soil phytoliths and phytolith-occluded carbon along aprecipitation gradient in grasslands of northern China
  • 2020
  • Ingår i: Geoderma. - : Elsevier. - 0016-7061 .- 1872-6259. ; 364, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic factors including mean annual precipitation (MAP) significantly influence the carbon (C) cycle interrestrial ecosystems and Earth overall. Phytolith-occluded carbon (PhytOC) is an important C sequestrationmechanism and as such plays a vital role in global long-term C sequestration. Understanding the spatialvariability in the storage of soil phytoliths and PhytOC and its relationship with climate is critical for evaluatingthe impact of global climate change on terrestrial ecosystem functions. However, little is known about theresponses of soil phytoliths and PhytOC to MAP in grassland ecosystems. This study sampled soil from 24natural, semi-arid steppe sites along a 2,500 km transect with a precipitation gradient of 243–481 mm yr−1 innorthern China. We investigated the influence of precipitation on the spatial distributions of soil phytoliths andPhytOC storage. Storage of soil phytoliths in bulk soil (0–100 cm depth) ranged from 21.3 ± 0.4 to88.4 ± 20.3 t ha−1 along the precipitation gradient. Amounts of soil phytoliths and PhytOC storage weresignificantly and positively correlated with MAP. Multiple regression analysis revealed that phytolith storage inbulk soil was best predicted by MAP (R = 0.5) and soil organic carbon (SOC, R = 0.4), with these two variablesaccounting for about 58% of the total variation observed. Considering the forecasted increase in MAP in theInner Mongolian steppe due to climate change, and the strong influence of MAP on the annual net primaryproductivity (ANPP) and related soil PhytOC input from litter decomposition in this region, we expect thatecosystem primary productivity will increase from deserts to meadow steppe and thereby promote soil PhytOCstorage. These findings have important implications for understanding the dynamics of soil phytoliths, andpredicting the impacts of global climate change on ecosystem functions and management practices in the EastAsian steppe ecosystems.
  •  
47.
  • Zheng, Xiaodi, et al. (författare)
  • Biogeochemical cycle and isotope fractionation of copper in plant-soil systems : a review
  • 2024
  • Ingår i: Reviews in Environmental Science and Biotechnology. - : Springer. - 1569-1705 .- 1572-9826. ; 23, s. 21-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper (Cu) is a bio-essential element and a potentially toxic pollutant in the plant-soil systems. Analysis of stable Cu isotopes can be a powerful tool for tracing the biogeochemical cycling of Cu in plant-soil systems. In this review, we examined the analysis method of stable Cu isotope ratios in plants and soils, and discussed the biogeochemical processes, including redox reactions, mineral dissolution, abiotic and biotic sorption, which fractionate Cu isotopes in plant-soil systems. We also reviewed the variability of the isotopic signature in different plants and plant tissues, as well as different soil types and profiles to discuss the relationship between the biogeochemical transformation of Cu and its isotope fractionation in plant-soil systems. The collected data show that delta 65Cu values range from - 2.59 to + 1.73 parts per thousand in plant-soil systems, and increment 65Cu values range from - 1.00 to - 0.11 parts per thousand between the plant and soil. The variation in the increment 65Cu value between the plant and soil is mainly in response to the different uptake strategies during the acquisition of Cu from soils. Cu isotope analyses are proved to be a suitable technique during the biogeochemical transformation of Cu in plant-soil systems, especially during redox reactions. Ultimately, research challenges and future directions for Cu isotope techniques as a proxy for Cu biogeochemical cycles are also proposed. This review is beneficial for soil safety, food safety, and the sustainable development of agriculture and human health.
  •  
48.
  • Zheng, Xiaodi, et al. (författare)
  • Extreme Copper Isotope Fractionation Driven by Redox Oscillation During Gleysols Weathering in Mun River Basin, Northeast Thailand
  • 2023
  • Ingår i: Journal of Geophysical Research - Earth Surface. - : John Wiley & Sons. - 2169-9003 .- 2169-9011. ; 128:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The fractionation of copper (Cu) isotope is a process related to the redox fluctuation during soil Cu biogeochemical cycling. For Cu isotope composition in weathered gleysols of tropical zones, the increased rates of redox fluctuations are assumed to occur during gleysol evolution due to the seasonal exchange of groundwater and river water. However, the impact of the frequency of redox fluctuations on soil Cu isotope signatures is rarely documented. Here, we analyzed the variations of Cu content and isotope fractionation in two low-humic gleysol profiles with different pedogenetic processes during weathering in the same basin (Mun River Basin), and found that the frequency of redox fluctuations could determine the magnitude of Cu isotope fractionation. We record an increased light Cu isotopes and identify the stable Cu(I) species retained in the residual soils with the increased frequency of redox fluctuation. Several processes contribute to Cu isotope fractionation at different soil horizons, but most isotope fractionation is related to the re-adsorption or re-precipitation by iron and manganese oxyhydroxide (i.e., ferrihydrite and pyrolusite), especially at the iron or manganese-rich zone. Cu isotope fractionation is sensitive to increased redox fluctuations in the terrestrial ecosystem, and may have significant implications for assessing soil ecological vulnerability under future climate change scenarios.
  •  
49.
  • Åström, Mats E., 1963-, et al. (författare)
  • Extensive accumulation of rare earth elements in estuarine sediments affected by leaching of acid sulfate soils
  • 2020
  • Ingår i: Boreal Environment Research. - : Finnish Environmental Inst. - 1239-6095 .- 1797-2469. ; 25, s. 105-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The concentrations, loads and speciation of rare earth elements (REEs) were studied in a 3.5 m thick mud depositional succession from an estuary in the Gulf of Bothnia. The uppermost 182.5 cm of the mud, estimated to have deposited from the early 1970s to 2011 (sampling year), had very high REE concentrations (596-1456 ppm) and accumulation rates (5.2-28 g m(-2) year(-1)). This was explained by large REE export from acid sulfate soils after they became efficiently drained with modern drainage techniques. Geochemical and synchrotron-based spectroscopic (XANES) analyses showed that the REEs in the mud are relatively firmly bound in non-clastic phases, likely adsorbed by clay minerals and also to some extent by iron oxyhydroxides. Below 182.5 cm, the REE concentrations successively decreased down to background values at the base at 3.5 m, reflecting less efficient drainage and leaching of the acid sulfate soils in previous decades and centuries.
  •  
50.
  • Åström, Mats E., 1963-, et al. (författare)
  • Sources, transport and sinks of beryllium in a coastal landscape affected by acidic soils
  • 2018
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier. - 0016-7037 .- 1872-9533. ; 232, s. 288-302
  • Tidskriftsartikel (refereegranskat)abstract
    • Beryllium (Be) sources, transport and sinks were studied in a coastal landscape where acidic soils (acid sulfate soils) have developed after drainage of fine-grained sulfide-bearing sediments. The study included the determination of total abundance and speciation of Be in a variety of solid and aqueous materials in both the terrestrial and estuarine parts of the landscape. A major feature was that despite normal (background) Be concentration in the sulfide-bearing sediments, the Be leaching from these sediments after O2-exposure and acid sulfate soil development were extensive, with concentrations up to 76 μg L−1 in soil water, 39 μg L−1 in runoff and 12 μg L−1 in low-order streams. These high Be concentrations were mainly in the solution form (i.e., passing a 1 kilodalton filter) and modelled to be dominated by free Be2+. The extensive Be release within, and leaching from the acid sulfate soils was controlled by pH, with a critical value of 4.0 below which the Be concentrations increased strongly. Although plagioclase and mica were most likely the main carriers of Be within these soils, it is suggested that other minerals such as Be hydroxides, Al hydroxides carrying Be, and Be sulfides are the main contributors of the abundance of dissolved Be in the acidic waters. When the acidic and Be-rich creek water was neutralized in the estuary of relatively low salinity, the dominating solution form of Be was removed by transformation to particles, reflected in the suspended particulate matter that had hydroxylamine hydrochloride extractable Be up to 17 mg kg−1 and ammonium acetate EDTA extractable Be up to 4 mg kg−1. In corresponding pristine materials (parent material of the acid sulfate soils) in the catchment, the median Be extractability with these reagents were only 0.3 and 0.05 mg kg−1, respectively. As the Be-rich suspended particulate matter ultimately became benthic sediment, the Be was preserved in terms of total concentrations but underwent to some extent changes in speciation, including release from hydroxides and concomitant scavenging by organic matter and particle surfaces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 50
Typ av publikation
tidskriftsartikel (44)
forskningsöversikt (3)
konferensbidrag (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (49)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Yu, Changxun, 1983- (50)
Song, Zhaoliang (30)
Åström, Mats E., 196 ... (21)
Wang, Hailong (17)
Hao, Qian (10)
Van Zwieten, Lukas (10)
visa fler...
Xia, Shaopan (10)
Yang, Xiaomin (8)
Liu, Hongyan (7)
Zhang, Xiaodong (7)
Wang, Yidong (7)
Guo, Laodong (5)
Dopson, Mark, 1970- (5)
Peltola, Pasi (5)
Drake, Henrik, 1979- (5)
Liu, Cong-Qiang (5)
Li, Qiang (4)
Yang, Shilei (4)
Ran, Xiangbin (4)
Chen, Chunmei (4)
Wang, Weiqi (4)
Boily, Jean-Francois (3)
Hogmalm, Johan, 1979 (3)
Ketzer, João Marcelo (3)
Högfors-Rönnholm, Ev ... (3)
Hartley, Iain P. (3)
Han, Guilin (3)
Fang, Yunying (3)
Shahabi-Ghahfarokhi, ... (3)
Yang, Yuanhe (2)
Shchukarev, Andrey (2)
Chen, Ji (2)
Sohlenius, Gustav (2)
Wang, Xia (2)
Drake, Henrik, Docen ... (2)
Djerf, Henric (2)
Sun, Xiaole (2)
Lopez-Fernandez, Mar ... (2)
Johnson, Anders (2)
Kuzyakov, Yakov (2)
Rahmati-Abkenar, Mah ... (2)
Fu, Xiaoli (2)
Yang, Xiaoming (2)
Wang, Zhengang (2)
Li, Zichuan (2)
Ding, Fan (2)
Virtasalo, Joonas J. (2)
Engblom, Sten (2)
Nyman, Alexandra (2)
Liu, Man (2)
visa färre...
Lärosäte
Linnéuniversitetet (50)
Umeå universitet (4)
Göteborgs universitet (3)
Stockholms universitet (3)
Högskolan Kristianstad (2)
Lunds universitet (2)
visa fler...
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (50)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Lantbruksvetenskap (10)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy