SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yu Ze) "

Sökning: WFRF:(Yu Ze)

  • Resultat 1-50 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
3.
  • Jacobs, Kevin B, et al. (författare)
  • Detectable clonal mosaicism and its relationship to aging and cancer.
  • 2012
  • Ingår i: Nature Genetics. - New York : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 44:6, s. 651-658
  • Tidskriftsartikel (refereegranskat)abstract
    • In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
  •  
4.
  • Cai, Bin, et al. (författare)
  • Unveiling the light soaking effects of the CsPbI3 perovskite solar cells
  • 2020
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 472
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure inorganic perovskite of CsPbI3 attracts great attentions due to its excellent thermal stability and more suitable bandgap for tandem solar cells. The power conversion efficiency (PCE) of CsPbI3 perovskite solar cells has swiftly increased to 19.03%. However, extensive researches on the material property and photovoltaic characterization are rather rare in the literatures. In this study, a remarkable light soaking effect is found in the CsPbI3 based perovskite solar cells as the PCE increases from 10.8% to 18.3% after 180 s soaking under AM 1.5G sunlight. Mechanisms behind this reproducible soaking effect have also been studied. It reveals that the depressed dark current caused by a stronger built-in field and the decreased defects density passivated by the photogenerated electrons result in the enhanced PCE after light soaking. Moreover, we carefully characterize that the supposed "HPbI3" should be "DMAPbI(3)" synthesized through anti-solvent vapor recrystallisation method.
  •  
5.
  • Li, Xing-Yu, et al. (författare)
  • Comparative Study of Dayside Pulsating Auroras Induced by Ultralow-Frequency Waves
  • 2023
  • Ingår i: Universe. - : MDPI AG. - 2218-1997. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsating auroras are usually observed with ultralow-frequency (ULF) waves in the Pc 3-5 band (period 10-600 s). These auroras are thought to result from interactions between energetic electrons and chorus waves, but their relationship with ULF waves remains an open question. In this study, we investigated this question by conducting a comparative study on two ULF wave events with pulsating auroras observed near the magnetic footprints. Conjugate observations from the Magnetospheric Multiscale mission and the Chinese Yellow River Station were used. In both events, lower-band chorus waves were observed, which were suggested to be connected with the auroral pulsations by wavelet analysis. The intensity of these waves oscillates at the period of the ULF waves, but the physics laid behind them differs by events. During the event of 22 January 2019, compressional ULF waves changed the threshold for the whistler anisotropy instability periodically, affecting the emission of chorus waves. In the event on 10 January 2016, poloidal ULF waves modulated the chorus wave generation by regulating electron temperature anisotropy through drift resonance. ULF waves in these events may originate from perturbations in the solar wind. We highlight the role of ULF waves in the solar wind-magnetosphere-ionosphere coupling, which requires further study.
  •  
6.
  •  
7.
  • Liu, Leifeng, et al. (författare)
  • Dislocation network in additive manufactured steel breaks strength-ductility trade-off
  • 2018
  • Ingår i: Materials Today. - : Elsevier BV. - 1369-7021 .- 1873-4103. ; 21:4, s. 354-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Most mechanisms used for strengthening crystalline materials, e.g. introducing crystalline interfaces, lead to the reduction of ductility. An additive manufacturing process - selective laser melting breaks this trade-off by introducing dislocation network, which produces a stainless steel with both significantly enhanced strength and ductility. Systematic electron microscopy characterization reveals that the pre-existing dislocation network, which maintains its configuration during the entire plastic deformation, is an ideal modulator that is able to slow down but not entirely block the dislocation motion. It also promotes the formation of a high density of nano-twins during plastic deformation. This finding paves the way for developing high performance metals by tailoring the microstructure through additive manufacturing processes.
  •  
8.
  • Liu, Wei, et al. (författare)
  • Coherent dynamics of multi-spin V-B(-) center in hexagonal boron nitride
  • 2022
  • Ingår i: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics ofmicrowave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V-B(-)) spin ensemble in hBN. We report on different dynamics of the V-B(-) spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V-B(-) and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V-B(-) center, which can be modulated by the magnetic field and microwave field.
  •  
9.
  • Machiela, Mitchell J., et al. (författare)
  • Characterization of Large Structural Genetic Mosaicism in Human Autosomes
  • 2015
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 96:3, s. 487-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 3 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
  •  
10.
  • Machiela, Mitchell J, et al. (författare)
  • Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome
  • 2016
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
  •  
11.
  • Yu, Han, et al. (författare)
  • Investigation and improvement of a novel double-working-electrode electrochemical system for organic matter treatment from high-salinity wastewater
  • 2017
  • Ingår i: Environmental Technology. - : Informa UK Limited. - 0959-3330 .- 1479-487X. ; 38:22, s. 2907-2915
  • Tidskriftsartikel (refereegranskat)abstract
    • The novel double-working-electrode electrochemical system with air diffusion cathode (ADC) and Ti/SnO2-Sb anode (TSSA) has shown higher efficiency and lower energy consumption for the degradation of organic pollutant from high-salinity wastewater, compared to the traditional single anode system. To further investigate and improve this system, in this work, firstly the effect of vital factors of the double-working-electrode electrochemical system including initial methyl orange (MO) concentration, NaCl concentration and initial pH value of organic solution were investigated, using MO as the targeted organic pollutant, carbon black ADC (CBAC) as cathode and stainless steel mesh electrode (SSME) as control. Besides, for the further improvement of removal performance, a novel home-made activated carbon-ADC (ACAC) was studied as cathode with the same investigation process. The results showed that, in the experiments studying the effect of both initial MO and NaCl concentrations, the removal performance was in the order of TSSA-ACAC > TSSA-CBAC > TSSA-SSME in all conditions of initial MO and NaCl concentrations. However, with the pH value reduced from 6.0 to 3.0, the performances of three systems turned to be much closer to each other. Besides, ACAC played a synergistic role in MO removal by greatly improving the MO removal performance and enhancing its adaptability to the reactor parametric variation. ACAC created a weak acidic environment for accelerating the indirect electro-oxidation of MO on TSSA. The MO degradation pathways in the three systems were the same but the TSSA-ACAC system gave a higher degradation kinetics order.
  •  
12.
  • An, Jincheng, et al. (författare)
  • Fine-Tuning by Triple Bond of Carbazole Derivative Dyes to Obtain High Efficiency for Dye-Sensitized Solar Cells with Copper Electrolyte
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : NLM (Medline). - 1944-8244 .- 1944-8252. ; 12:41, s. 46397-46405
  • Tidskriftsartikel (refereegranskat)abstract
    • Three novel dyes consisting of a 5,8,15-tris(2-ethylhexyl)-8,15-dihydro-5H-benzo[1,2-b:3,4-b':6,5-b″]tricarbazole (BTC) electron-donating group and a 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTBT) π-bridge with an anchoring group of phenyl carboxyl acid were synthesized and applied in dye-sensitized solar cells (DSCs).The AJ202 did not contain any triple bonds, the AJ201's ethynyl group was inserted between the BTC and BTBT units, and the AJ206's ethynyl group was introduced between the BTBT moiety and the anchor group. The inclusion and position of the ethynyl linkage in the sensitizer molecules significantly altered the electrochemical properties of these dyes, which can fine-tune the energy levels of the dyes. The best performing devices contained AJ206 as a sensitizer and a Cu(I/II) redox couple, which resulted in a power conversion efficiency (PCE) up to 10.8% under the standard AM 1.5 G illumination, which obtained PCEs higher than those from the devices that contained AJ201 (9.2%) and AJ202 (9.7%) under the same conditions. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the sensitizers were tuned to be well-suited for the Cu(I/II) redox potential and the Fermi level of TiO2. The innovative synthesis of a tricarbazole-based donor moiety in a sensitizer used in combination with a Cu(I/II) redox couple has resulted in relatively high PCEs.
  •  
13.
  • An, Jincheng, et al. (författare)
  • Thiophene-fused carbazole derivative dyes for high-performance dye-sensitized solar cells
  • 2021
  • Ingår i: Tetrahedron. - : Elsevier BV. - 0040-4020 .- 1464-5416. ; 88
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel dyes that are similar in chemical structure, except for different donor units, AJ301and AJ303 were synthesized, characterized and applied as sensitizers in dye-sensitized solar cells (DSSCs). Both dyes exhibited a wide absorption of visible sunlight. The introduction of fused rings on the donor unit of AJ303 presented an appropriate energy level, less recombination and longer electron lifetime to achieve a power conversion efficiency (PCE) of 10.2%, far above that achieved for AJ301 of 6.2% with a [Co(bpy)(3)](2+/3+)-based electrolyte under standard AM1.5G solar irradiation (100 mW cm(-2)). The DSSCs based on AJ303 and AJ301 with [Cu(tmby)(2)](2+/+)-based electrolyte showed a lower PCE of 8.2% and 5.4%, respectively. Therefore, the results indicated that the introduction of a fused-ring in the donor group is a meaningful synthetic strategy to improve the photovoltaic performance.
  •  
14.
  • Cai, Bin, et al. (författare)
  • Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2-b]carbazole dopant-free hole transporting material by improving its spatial configuration
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 7:24, s. 14835-14841
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of facilely synthesized, dopant-free hole-transporting materials (HTMs) with high efficiency is of great significance for the potential application of perovskite solar cells (PSCs). Herein, we report two novel indolo[3,2-b]carbazole (ICZ) based small molecules obtained via a three-step reaction in a high yield without using expensive catalysts, namely C201 and C202, and further apply them as dopant-free HTMs in PSCs. Compared with C201, C202 contains two additional biphenylamino groups to improve its spatial configuration. It is found that the interplay between the molecular geometry and the aggregation behavior can exert a great influence on the film formation property and thus on the device performance. Strikingly, the champion devices employing C202 as the HTM deliver a much higher PCE of up to 17.7%, which is substantially higher than that of devices containing C201 (8.7%) under 100 mW cm(-2) illumination (AM 1.5G). It is revealed that the C202 capping layer exhibits a more homogeneous and uniform surface morphology as compared to that of C201, which effectively reduces the charge recombination losses and facilitates charge extraction, leading to a much-enhanced photovoltaic performance. This is the first example of ICZ core-based small molecules as dopant-free HTMs in PSCs. Moreover, the PSCs containing C202 as the HTM also exhibited good long-term stability under ambient conditions (40% RH) as compared to devices with doped spiro-OMeTAD, due largely to the hydrophobic nature of C202 which prevented moisture from destroying the perovskite film. This work offers a new avenue for developing cost-effective and stable HTMs for PSCs and other optoelectronic devices.
  •  
15.
  • Chang, Qingyan, et al. (författare)
  • Precursor engineering enables high-performance all-inorganic CsPbIBr2 perovskite solar cells with a record efficiency approaching 13%
  • 2024
  • Ingår i: Journal of Energy Chemistry. - : Elsevier BV. - 2095-4956 .- 2096-885X. ; 90, s. 16-22
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic CsPbIBr2 perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability. However, the deposition of high-quality solution-processed CsPbIBr2 perovskite films with large thicknesses remains challenging. Here, we develop a triple-component precursor (TCP) by employing lead bromide, lead iodide, and cesium bromide, to replace the most commonly used double-component precursor (DCP) consisting of lead bromide and cesium iodide. Remarkably, the TCP system significantly increases the solution concentration to 1.3 M, leading to a larger film thickness (∼390 nm) and enhanced light absorption. The resultant CsPbIBr2 films were evaluated in planar n-i-p structured solar cells, which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm−2 in comparison to that of DCP-based devices (10.69 mA cm−2). By adopting an organic surface passivator, the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr2 perovskite solar cells.
  •  
16.
  • Ding, Xin, et al. (författare)
  • Artificial photosynthesis : A two-electrode photoelectrochemical cell for light driven water oxidation with molecular components
  • 2014
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 149, s. 337-340
  • Tidskriftsartikel (refereegranskat)abstract
    • An efficient two-electrode molecular PEC was assembled, in which a photoanode was constructed using a co-adsorbed method with a molecular photosensitizer (PS) 1 and a molecular catalyst 2 on TiO2-sintered FTO electrode (TiO2(1 + 2)). Without applied bias against a reference electrode, the system achieves remarkable photocurrent densities and carries out light driven water oxidation as evidenced by Clark electrode measurements in solution. A photocurrent density of 70 mA/cm(2) has been obtained within 10 s illumination time, and a TON of about 220 was obtained with a maximum turnover frequency (TOF) of ca. 4 min(-1) within the initial 5 minutes illumination duration.
  •  
17.
  • Ding, Xin, et al. (författare)
  • Silicon Compound Decorated Photoanode for Performance Enhanced Visible Light Driven Water Splitting
  • 2016
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 215, s. 682-688
  • Tidskriftsartikel (refereegranskat)abstract
    • An efficient dye (1) sensitized photoelectrochemical cell (DS-PEC) has been assembled with a silicon compound (3-chloropropyl) trimethoxy-silane (Si-Cl) decorated working electrode (WE) TiO2(1 + 2). The introduction of this Si-Cl molecule on photoanode leads to better performances on efficiency than untreated ones for light driven water splitting. The firm Si-O layer formed on TiO2 increased the resistance of the TiO2/catalyst interface which is assumed to decrease charge recombination from TiO2 to the oxidized catalyst 2. The work presented here provides an effective method to improve the performances of DS-PECs.
  •  
18.
  • Ding, Xin, et al. (författare)
  • Visible Light-Driven Water Splitting in Photoelectrochemical Cells with Supramolecular Catalysts on Photoanodes
  • 2014
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 4:7, s. 2347-2350
  • Tidskriftsartikel (refereegranskat)abstract
    • By using a supramolecular self-assembly method, a functional water splitting device based on a photoactive anode TiO2(1+2) has been successfully assembled with a molecular photosensitizer 1 and a molecular catalyst 2 connected by coordination of 1 and 2 with Zr4+ ions on the surface of nanostructured TiO2. On the basis of this photoanode in a three-electrode photoelectrochemical cell, a maximal incident photon to current conversion efficiency of 4.1% at similar to 450 nm and a photocurrent density of similar to 0.48 mA cm(-2) were successfully obtained.
  •  
19.
  • Elawad, Mohammed, et al. (författare)
  • Ionic liquid doped organic hole transporting material for efficient and stable perovskite solar cells
  • 2020
  • Ingår i: Physica. B, Condensed matter. - : Elsevier BV. - 0921-4526 .- 1873-2135. ; 586
  • Tidskriftsartikel (refereegranskat)abstract
    • As a hole transporting material (HTM), N2,N2,N2',N2',N7,N7,N7',N7'-octakis (4-methoxyphenyl) spiro [fluorene-9,9'-xanthene]-2,2',7,7'-tetraamine (X60) in mesoscopic perovskite solar cells (PSCs) has been widely utilized for substitution of the 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9,9'-spiro-bi-fluorene (spiroOMeTAD). In this study, we have introduced an ionic liquid N-butyl-N'-(4-pyridylheptyl) imidazolium bis (trifluoromethane) sulfonamide (BuPyIm-TFSI) as a p-dopant to increase the hole conductivity and stability of the X60 based perovskite solar cells. As a result, based on the different concentrations of BuPyIm-TFSI in mesoscopic PSCs, the optimal condition (4.85 mM) showed the best power conversion efficiency (PCE) of 14.65%, which is extremely higher than the device without BuPyIm-TFSI. Moreover, the device based on X60: BuPyIm-TFSI composite HTM at ambient conditions with humidity of similar to 40% exhibited good PSCs performance with the long-term stability of 840 h. Hence, the use of BuPyIm-TFSI as a p-dopant for X60 played a significant role in enhancing the electrical properties, stability and efficiency of PSCs.
  •  
20.
  • Gao, Xinyu, et al. (författare)
  • Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating
  • 2023
  • Ingår i: Energies. - 1996-1073. ; 16:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar energy is a sustainable source that can be effectively utilized to address winter heating challenges in buildings. To ensure the efficient application of solar energy for heating purposes and to maintain reliable performance of the heating system, the integration of phase-change materials (PCMs) in thermal energy storage (TES) systems has emerged as a crucial auxiliary approach. This study focuses on the design and simulation of four TES structures: smooth, finned, metallic foam, and metallic foam-finned tubes. It explores their thermal characteristics, such as complete melting time and heat flux, under various flow conditions. Additionally, a residential building in Xi’an is selected as the object, where the proposed solar energy phase-change TES system is employed to meet the heating demand. Economic indicators, including initial investment and investment payback period, are estimated using a static evaluation method. The results highlight that the complete melting time of the TES unit with a metallic foam-finned tube is 4800 s, which is 88.3% less than the smooth tube. Finally, based on the actual project, it is determined that the metallic foam-finned heating system, with an HTF flow rate of 0.25 m/s, requires the fewest TES devices (914) and has a payback period of 13 months.
  •  
21.
  • Gao, Yan, et al. (författare)
  • Artificial photosynthesis : photosensitizer/catalyst supramolecular assemblies for light driven water oxidation
  • 2014
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 176, s. 225-232
  • Tidskriftsartikel (refereegranskat)abstract
    • Three new supramolecular assemblies SA1-SA3 with different linkages between the photosensitizer and catalyst have been synthesized for light driven water oxidation. With flexible -CH2-CH2- chains as the linkage, the assembly SA3 displays the best performance for photocatalytic water oxidation compared with the other two assemblies, a turnover number of 34 has been obtained based on the molecular assembly SA3 in a homogeneous system. This type of assembly connected with flexible linkages represents suitable candidates to construct photoanodes for light driven water splitting in dye sensitized photoelectrochemical devices.
  •  
22.
  • Han, Siyuan, et al. (författare)
  • Side-chain engineering of PEDOT derivatives as dopant-free hole-transporting materials for efficient and stable n-i-p structured perovskite solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 8:27, s. 9236-9242
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-cost poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been widely used as hole-transporting materials (HTMs) in p-i-n perovskite solar cells (PSCs). However, reports on the use of PEDOT-based HTMs in regular PSCs have been rather limited up till now due to the low solubility of PEDOT in organic solvents. In this work, we report three PEDOT derivatives, namely, PEDOT-C6 (P6), PEDOT-C10 (P10), and PEDOT-C14 (P14), with a simple synthetic process by tailoring the length of the alkyl side-chains, and apply them as dopant-free HTMs in mesoscopic n-i-p structured PSCs. It is revealed that the alkyl side-chain length has a significant impact on the film morphology, hole transport capability, and thus the overall solar cell performance. The devices with P10 afford a champion PCE of 16.2% at one sun illumination (100 mW cm(-2), AM 1.5G), which is significantly higher compared to those based on P6 (12.1%) and P14 (14.8%) under identical conditions. This has been the highest PCE reported so far for dopant-free PEDOT-based HTMs in conventional PSCs. The greatly enhanced photovoltaic performance observed for the P10-based devices is mainly attributed to the superior film formation property and hole transport capability of P10. Furthermore, the devices utilizing P10 also show excellent ambient stability, retaining 75% of their initial performance at a relative humidity (RH) of 80% after 120 h due to the high moisture resistivity of the HTM. The present work provides a new avenue for further developing low-cost, efficient, and stable HTMs in PSCs in the future.
  •  
23.
  • Hillier, Ladeana W, et al. (författare)
  • Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
  • 2004
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 432:7018, s. 695-716
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
  •  
24.
  • Hu, Maowei, et al. (författare)
  • Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:36, s. 30409-30416
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of an efficient and stable redox mediator is of paramount importance for commercialization of dye-sensitized solar cells (DSCs). Herein, we report a new class of copper complexes containing diamine-dipyridine tetradentate ligands (L1 = N,N'-dibenzyl-N,N'-bis-(pyridin-2-ylmethyl)ethylenediamine; L2 = N,N'-dibenzyl-N,N'-bis (6-methyl-pyridin-2-ylmethyl)ethylenediamine) as redox mediators in DSCs. Devices constructed with [Cu(L2)](2+/+) redox couple afford an impressive power conversion efficiency (PCE) of 9.2% measured under simulated one sun irradiation (100 mW cm(-2), AM 1.5G), which is among the top efficiencies reported thus far for DSCs with copper complex-based redox mediators. Remarkably, the excellent air, photo, and electrochemical stability of the [Cu(L2)](2+/+) complexes renders an outstanding long-term stability of the whole DSC device, maintaining similar to 90% of the initial efficiency over 500 h under continuous full sun irradiation. This work unfolds a new platform for developing highly efficient and stable redox mediators for large-scale application of DSCs.
  •  
25.
  • Jiang, Xiaoqing, et al. (författare)
  • A solution-processable copper(II) phthalocyanine derivative as a dopant-free hole-transporting material for efficient and stable carbon counter electrode-based perovskite solar cells
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 5:34, s. 17862-17866
  • Tidskriftsartikel (refereegranskat)abstract
    • A solution-processable copper(II) phthalocyanine derivative coded as CuPc-TIPS has been synthesized and adopted as a hole-transporting material (HTM) in perovskite solar cells (PSCs), in combination with a mixed-ion perovskite absorber and a low-cost carbon cathode. Optimised PSC devices based on pristine CuPc-TIPS without any additives or dopants show a decent power conversion efficiency of 14.0% (measured at 100 mW cm(-2) illumination, AM 1.5G), together with a good long-termstability under ambient conditions. The present finding highlights the potential of solution-processed copper phthalocyanine derivative-based HTMs for the development of efficient and stable PSCs in the future.
  •  
26.
  • Jiang, Xiaoqing, et al. (författare)
  • Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material
  • 2017
  • Ingår i: Science China Chemistry. - : Science in China Press. - 1674-7291 .- 1869-1870. ; 60:3, s. 423-430
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of alternative low-cost and high-performing hole-transporting materials (HTMs) is of great significance for the potential large-scale application of perovskite solar cells (PSCs) in the future. Here, a facilely synthesized solution-processable copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine (CuPc-DMP) via only two simple steps, has been incorporated as a hole-transporting material (HTM) in mesoscopic perovskite solar cells (PSCs). The optimized devices based on such a HTM afford a very competitive power conversion efficiency (PCE) of up to 17.1% measured at 100 mW cm(-2) AM 1.5G irradiation, which is on par with that of the well-known 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (16.7%) under equivalent conditions. This is, to the best of our knowledge, the highest value reported so far for metal organic complex-based HTMs in PSCs. The advantages of this HTM observed, such as facile synthetic procedure, superior hole transport characteristic, high photovoltaic performance together with the feasibility of tailoring the molecular structure would make solution-processable copper phthalocyanines as a class of promising HTM that can be further explored in PSCs. The present finding highlights the potential application of solution processed metal organic complexes as HTMs for cost-effective and high-performing PSCs.
  •  
27.
  • Jiang, Xiaoqing, et al. (författare)
  • High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm(-2) illumination (AM 1.5G), with an open-circuit voltage (V-oc) of 1.05 V, a short-circuit current density (J(sc)) of 23.5 mA/cm(2) and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.
  •  
28.
  • Jiang, Xiaoqing, et al. (författare)
  • Molecular Engineering of Copper Phthalocyanines : A Strategy in Developing Dopant-Free Hole-Transporting Materials for Efficient and Ambient-Stable Perovskite Solar Cells
  • 2019
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole-transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low-cost and excellent stability. However, the most efficient PSCs using CuPc-based HTMs reported thus far still rely on hygroscopic p-type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc-Bu and CuPc-OBu, by molecular engineering of the non-peripheral substituents of the Pc rings, and applied as dopant-free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant-free CuPc-OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc-Bu (14.3%). Moreover, PSCs containing dopant-free CuPc-OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro-OMeTAD. This work thus provides a fundamental strategy for the future design of cost-effective and stable HTMs for PSCs and other optoelectronic devices.
  •  
29.
  • Li, Xing Yu, et al. (författare)
  • Ion Acceleration and Corresponding Bounce Echoes Induced by Electric Field Impulses: MMS Observations
  • 2024
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Dayside magnetosphere interactions are essential for energy and momentum transport between the solar wind and the magnetosphere. In this study, we investigate a new phenomenon within this regime. Sudden enhancements of ion fluxes followed by repeating dropouts and recoveries were observed by Magnetospheric Multiscale on 5 November 2016, which is the very end of the recovery phase from a moderate geomagnetic storm. These repetitive flux variations display energy-dispersive characteristics with periods relevant to ion bounce motion, suggesting they are corresponding echoes. Alongside the flux variations, bipolar electric field impulses originating from external sources were detected. We traced the source region of the initial injection and found it is located near the spacecraft's position. To elucidate the underlying physics, a test-particle simulation is conducted. The results reveal that radial transport resulting from impulse-induced acceleration can give rise to these echoes. Observations demonstrate dayside magnetosphere interactions are more common than we previously considered, which warrants further research.
  •  
30.
  • Liu, Qi, et al. (författare)
  • Surface passivation and hole extraction : Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%
  • 2022
  • Ingår i: Journal of Energy Challenges and Mechanics. - : Elsevier BV. - 2056-9386. ; 74, s. 387-393
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic CsPbIBr2 perovskite solar cells (PSCs) have attracted considerable research attention in recent years due to their excellent thermal stability. However, their power conversion efficiencies (PCEs) are relatively low and still far below the theoretical limit. Here, we report the use of an organic dye molecule (namely VG1-C8) as a bifunctional interlayer between perovskite and the hole-transport layer in CsPbIBr2 PSCs. Combined experimental and theoretical calculation results disclose that the mul-tiple Lewis base sites in VG1-C8 can effectively passivate the trap states on the perovskite films. Meanwhile, the p-conjugated dye molecule significantly accelerates the hole extraction from the per-ovskite absorber as evidenced by the photoluminescence analysis. Consequently, the VG1-C8 treatment simultaneously boosts the photovoltage and photocurrent density values from 1.26 V and 10.80 mA cm -2 to 1.31 V and 12.44 mA cm -2, respectively. This leads to a significant enhancement of PCE from 9.20% to 12.10% under one sun irradiation (AM 1.5G). To our knowledge, this is the record efficiency reported so far for CsPbIBr2 PSCs. Thus, the present work demonstrates an effective interfacial passivation strategy for the development of highly efficient PSCs.
  •  
31.
  • Pan, Yue, et al. (författare)
  • Bark Beetle-Associated Blue-Stain Fungi Increase Antioxidant Enzyme Activities and Monoterpene Concentrations in Pinus yunnanensis
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Yunnan pine is the most important tree species in SW China in both economical and ecological terms, but it is often killed by pine shoot beetles (Tomicus spp.). Tomicus beetles are secondary pests in temperate regions and the aggressiveness of the beetles in SW China is considered to be due to the warm subtropical climates as well as the beetles' virulent fungal associates. Here, we assessed the virulence of three blue-stain fungi (Leptographium wushanense, L. sinense and Ophiostoma canum) associated with pine shoot beetles to Yunnan pine (Pinus yunnanensis) in SW China. Following fungal inoculation, we measured necrotic lesion lengths, antioxidant enzyme activities and monoterpene concentrations in the stem phloem of Yunnan pine. Leptographium wushanense induced twice as long lesions as L. sinense and O. canum, and all three fungi induced significantly longer lesions than sterile agar control inoculations. The activity of three tested antioxidant enzymes (peroxidase, polyphenol oxidase, and superoxide dismutase) increased after both fungal inoculation and control inoculation. However, L. wushanense and L. sinense generally caused a greater increase in enzyme activities than O. canum and the control treatment. Fungal inoculation induced stronger increases in six major monoterpenes than the control treatment, but the difference was significant only for some fungus-monoterpene combinations. Overall, our results show that L. wushanense and L. sinense elicit stronger defense responses and thus are more virulent to Yunnan pine than O. canum. The two Leptographium species may thus contribute to the aggressiveness of their beetle vectors and could damage Yunnan pine across SW China if they spread from the restricted geographical area they have been found in so far.
  •  
32.
  • Perera, Ishanie Rangeeka, et al. (författare)
  • Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type Dye-Sensitized Solar Cells
  • 2015
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 54:12, s. 3758-3762
  • Tidskriftsartikel (refereegranskat)abstract
    • An electrolyte based on the tris(acetylacetonato)iron( III)/(II) redox couple ([Fe(acac)(3)](0/1)) was developed for p-type dye-sensitized solar cells (DSSCs). Introduction of a NiO blocking layer on the working electrode and the use of chenodeoxycholic acid in the electrolyte enhanced device performance by improving the photocurrent. Devices containing [Fe(acac)(3)](0/1-) and a perylene-thiophene-triphenylamine sensitizer (PMI-6T-TPA) have the highest reported short-circuit current (J(SC)=7.65 mA cm(-2)), and energy conversion efficiency (2.51%) for p-type DSSCs coupled with a fill factor of 0.51 and an open-circuit voltage V-OC=645 mV. Measurement of the kinetics of dye regeneration by the redox mediator revealed that the process is diffusion limited as the dye-regeneration rate constant (1.7 x 10(8) M-1 S-1) is very close to the maximum theoretical rate constant of 3.3 x 10(8) M-1 S-1. Consequently, a very high dye-regeneration yield (>99%) could be calculated for these devices.
  •  
33.
  • Qu, Jishuang, et al. (författare)
  • Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt
  • 2018
  • Ingår i: Science in China Series B. - : Science Press. - 1674-7291 .- 1869-1870. ; 61:2, s. 172-179
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of an efficient, stable, and low-cost hole-transporting material (HTM) is of great significance for perovskite solar cells (PSCs) from future commercialization point of view. Herein, we specifically synthesize a dicationic salt of X60 termed X60(TFSI)(2), and adopt it as an effective and stable "doping" agent to replace the previously used lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) for the low-cost organic HTM X60 in PSCs. The incorporation of this dicationic salt significantly increases the hole conductivity of X60 by two orders of magnitude from 10(-6) to 10(-4) S cm(-1). The dramatic enhancement of the conductivity leads to an impressive power conversion efficiency (PCE) of 19.0% measured at 1 sun illumination (100 mW cm(-2), AM 1.5 G), which is comparable to that of the device doped with LiTFSI (19.3%) under an identical condition. More strikingly, by replacing LiTFSI, the PSC devices incorporating X60(TFSI)(2) also show an excellent long-term durability under ambient atmosphere for 30 days, mainly due to the hydrophobic nature of the X60(TFSI)(2) doped HTM layer, which can effectively prevent the moisture destroying the perovskite layer. The present work paves the way for the development of highly efficient, stable, and low-cost HTM for potential commercialization of PSCs.
  •  
34.
  • Shao, Xiaodan, et al. (författare)
  • Energy-saving optimization of the parallel chillers system based on a multi-strategy improved sparrow search algorithm
  • 2023
  • Ingår i: Heliyon. - 2405-8440. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy usage of parallel chillers systems accounts for 25–40 % of the total energy cost of a building. In light of global warming concerns and the need for energy conservation, it is essential to distribute the load of the parallel chillers systems effectively to achieve energy savings in buildings. Accordingly, this study presents a multi-strategy improved sparrow search algorithm (MSSA) to address optimization of the optimal chillers loading (OCL) problem. The proposed algorithm augments the basic sparrow search algorithm (SSA) by introducing the Sine chaotic map, Levy flight method, and Cauchy variation to enhance diversity, avoid local optima, and increase global and local search capacities. We use 9 benchmark functions to check the performance of the proposed MSSA algorithm, and the results are better than the selected algorithms such as particle swarm algorithm (PSO), harris hawks optimization (HHO), artificial rabbit optimization (ARO) and sparrow search algorithm (SSA). In addition, MSSA is applied to two typical cases to demonstrate its performance to optimal chillers loading and the results indicate that the MSSA outperforms similar algorithms. This study validates that MSSA can provide a promising solution to resolve the OCL problem.
  •  
35.
  • Song, Xinkai, et al. (författare)
  • Improving energy transfer efficiency of dye-sensitized solar cell by fine tuning of dye planarity
  • 2019
  • Ingår i: Solar Energy. - : Elsevier. - 0038-092X .- 1471-1257. ; 187, s. 274-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Two push-pull metal-free sensitizers with 5,11-dihydroindolo[3,2-b]carbazole derivatives as electron-donating groups and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTZ) as electron-withdrawing unit, denoted by SK201 and SK202, were synthesized and used for fabrication of dye-sensitized solar cells (DSSCs). SK202 contains a thienyl group between the donor and acceptor, whereas in SK201 the donor and acceptor are connected directly by a single bond. Introduction of a thienyl group improved the planarity of the dye molecule, broadened the absorption spectrum, enhanced the molar extinction coefficient, increased the dye loading on TiO2, and accelerated interface electron transfer on TiO2. This fine tuning of dye structure improved the performances of DSSCs based on SK202 sensitizers and gave a power conversion efficiency (PCE) of 11.0% (J(SC) 16.5 mA cm(-2), V-OC 932 mV, and fill factor 71.7%), compared with that of 7.2% for SK201, under standard AM1.5G solar irradiation (100 mW cm(-2)) with a Co(II/III) complex based redox couple.
  •  
36.
  •  
37.
  •  
38.
  • Tian, Haining, et al. (författare)
  • Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:24, s. 9413-9422
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of organic thiolate/disulfide redox couples have been synthesized and have been studied systematically in dye-sensitized solar cells (DSCs) on the basis of an organic dye (TH305). Photophysical, photoelectrochemical, and photovoltaic measurements were performed in order to get insights into the effects of different redox couples on the performance of DSCs. The polymeric, organic poly(3,4-ethylenedioxythiophene) (PEDOT) material has also been introduced as counter electrode in this kind of noniodine-containing DSCs showing a promising conversion efficiency of 6.0% under AM 1.5G, 100 mW.cm(-2) light illumination. Detailed studies using electrochemical impedance spectroscopy and linear-sweep voltammetry reveal that the reduction of disulfide species is more efficient on the PEDOT counter electrode surface than on the commonly used platinized conducting glass electrode. Both pure and solvated ionic-liquid electrolytes based on a thiolate anion have been studied in the DSCs. The pure and solvated ionic-liquid-based electrolytes containing an organic redox couple render efficiencies of 3.4% and 1.2% under 10 mW.cm(-2) light illumination, respectively.
  •  
39.
  • Wang, Haoxin, et al. (författare)
  • Efficient and Stable Inverted Planar Perovskite Solar Cells Employing CuI as Hole-Transporting Layer Prepared by Solid-Gas Transformation
  • 2017
  • Ingår i: Energy Technology. - : Wiley-VCH Verlagsgesellschaft. - 2194-4288. ; 5:10, s. 1836-1843
  • Tidskriftsartikel (refereegranskat)abstract
    • The inorganic p-type semiconductor CuI possesses several unique characteristics such as high transparency, low-production cost, high hole mobility, and good chemical stability and is a promising hole-transporting material candidate that can be explored in solar-cell devices. Herein, we adopt a simple solid-gas reaction method to fabricate a uniform CuI film by exposing a thermally evaporated copper film to iodine vapor and apply it as a hole-transporting layer (HTL) in inverted planar perovskite solar cells (PSCs). The optimized devices display a promising power conversion (PCE) efficiency of 14.7%, with an open-circuit voltage of 1.04 V, a short-circuit current density of 20.9 mWcm(-2), and a fill factor of 0.68. This is one of the highest PCE values reported so far for CuI-based HTL in PSCs. Moreover, the devices studied also exhibit good long-term stability at ambient atmosphere, arising from the hydrophobicity of CuI HTL. The results highlight that CuI fabricated using the simple and low-temperature processing method presented here holds great promise as low-cost alternative HTL material for the development of efficient and stable inverted planar PSCs in the future.
  •  
40.
  • Wang, Haoxin, et al. (författare)
  • Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbI3 Perovskite Solar Cells with Efficiency Exceeding 20%
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:2, s. 1390-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • A chlorophyll derivative, sodium copper chlorophyllin (NaCu-Chl), is utilized to passivate the defects at the perovskite film surface via a solution post-treatment method. It is found that NaCu-Chl not only suppresses the defect-induced nonradiative recombination but also improves the film morphology. Moreover, NaCu-Chl treatment also facilitates efficient hole extraction from perovskite to Spiro-OMeTAD. As a result, NaCu-Chl-treated MAPbI3 PSCs produce an optimal power conversion efficiency (PCE) of 20.27% with better ambient and thermal stability. This work offers an insight into the application of natural products and derivatives for fabrication of PSCs.
  •  
41.
  • Wang, Haoxin, et al. (författare)
  • One plus one greater than two : high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 6:43, s. 21435-21444
  • Tidskriftsartikel (refereegranskat)abstract
    • The low-cost and stable inorganic p-type semiconductor copper(i) iodide (CuI) is a promising hole-transporting layer (HTL) material for inverted planar perovskite solar cells (PSCs). However, the power conversion efficiencies (PCEs) of inverted planar PSCs based on CuI HTLs reported so far are not satisfactory and far behind those of their organic counterparts. Herein, we demonstrate a simple but effective approach to improve the performance of inverted planar PSCs based on the CuI HTL through the incorporation of copper thiocyanate (CuSCN) into the CuI HTL. As compared to pristine CuI, the introduction of CuSCN significantly improves the quality of the film, resulting in a smooth and uniform film while maintaining relatively high electrical conductivity. As a consequence, the champion device based on the composite CuI/CuSCN HTL affords an impressive PCE of 18.76% under full sun illumination (100 mW cm(-2), AM 1.5G), which is substantially higher than the corresponding values of the respective devices containing pristine CuI (14.53%) and CuSCN (16.66%). This value is one of the highest efficiencies reported thus far for CuI- and CuSCN-based HTLs in PSCs. This work demonstrates the great potential of low-temperature solution-processed CuI/CuSCN composites as hole-selective layers for low-cost and efficient PSCs as well as other optoelectronic devices.
  •  
42.
  • Wang, Weihan, et al. (författare)
  • Enhancing the Energy-Conversion Efficiency of Solid-State Dye-Sensitized Solar Cells with a Charge-Transfer Complex based on 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
  • 2018
  • Ingår i: ENERGY TECHNOLOGY. - : John Wiley & Sons. - 2194-4288. ; 6:4, s. 752-758
  • Tidskriftsartikel (refereegranskat)abstract
    • As a champion hole-transporting material (HTM), 2,27,7-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) has been widely used in solid-state dye-sensitized solar cells (ssDSCs). Owing to the low conductivity of Spiro-OMeTAD, a chemical doping strategy is commonly used to enhance its hole-transporting properties. In this study, we report a strong electron acceptor, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an additive for Spiro-OMeTAD along with its application in ssDSCs. We show that the conductivity of Spiro-OMeTAD increases from 5.31 x 10(-5) to 2.22 x 10(-4) Scm upon the addition of 0.04% DDQ, and the power conversion efficiency (PCE) of the ssDSCs also increases. By utilizing a donor-pi-acceptor sensitizer with a high coefficient and an HTM with an optimized doping ratio, we were able to achieve a high PCE of 6.37% for the ssDSCs under 10 0mWcm(-2) AM1.5G simulated illumination, in comparison to the PCE of the pristine device, which was only 3.50%. An increase in the application of benzoquinone-based materials for organic electronics is expected, especially for solar-cell applications.
  •  
43.
  • Xie, Shipeng, et al. (författare)
  • Non-Blind Image Deblurring Method by the Total Variation Deep Network
  • 2019
  • Ingår i: IEEE Access. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2169-3536. ; 7, s. 37536-37544
  • Tidskriftsartikel (refereegranskat)abstract
    • There are a lot of non-blind image deblurring methods, especially with the total variation (TV) model-based method. However, how to choose the parameters adaptively for regularization is a major open problem. We proposed a very novel method that is based on the TV deep network to learn the best parameters adaptively for regularization. We used deep learning and prior knowledge to set up a TV-based deep network and calculate the parameters of regularization, such as biases and weights. Therefore, we used the idea of a deep network to update these parameters automatically to avoid sophisticated calculations. Our experimental results by our proposed network are significantly better than several other methods, in respect of detail retention and anti-noise performance. At the same time, we can achieve the same effect with a minimum number of training sets, thus speeding up the calculation.
  •  
44.
  • Yu, Ze, et al. (författare)
  • Diiron dithiolate complexes containing intra-ligand NH center dot center dot center dot S hydrogen bonds : FeFe hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential
  • 2008
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; :18, s. 2400-2406
  • Tidskriftsartikel (refereegranskat)abstract
    • Four diiron dithiolate complexes containing ortho- acylamino- functionalized arenethiolato ligands, [(mu-S-2-RCONHC6H4)(2)Fe-2(CO)(6)] (R=CH3, 1; CF3, 2; C6H5, 3; 4-FC6H4, 4), were synthesized and well characterized as biomimetic models of the Fe-Fe hydrogenase active site. The molecular structures of 3 and 4 were determined by X-ray crystallography. The intra-ligand NH center dot center dot center dot S hydrogen bonds were studied by the X-ray analysis and by the H-1 NMR spectroscopy. The contribution of the NH center dot center dot center dot S hydrogen bonds to the reduction potentials of complexes 1-4 was investigated by electrochemistry. The first reduction potentials of complexes 1-4 exhibit large positive shifts, that is, 220-320 mV in comparison to that of the analogous complex [(mu- SPh)(2)Fe-2(CO)(6)] and 370-470 mV to that of [(mu- pdt)(2)Fe-2(CO)(6)] (pdt = propane-1,3-dithiolato). Complex 4 is capable of electrocatalysing proton reduction of acetic acid at relatively low overpotential ( ca. 0.2 V) in acetonitrile.
  •  
45.
  • Yu, Ze, et al. (författare)
  • High-efficiency perovskite solar cells employing a conjugated donor-acceptor co-polymer as a hole-transporting material
  • 2017
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 7:44, s. 27189-27197
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we have successfully introduced 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) as an efficient p-type dopant for donor-acceptor (D-A) co-polymer poly[2,6-(4,4-bis-(2ethylhexyl)- 4H-cyclopenta[2,1-b; 3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) as an HTM in mesoscopic perovskite solar cells (PSCs). The bulk conductivity is significantly enhanced by 4 orders of magnitude when PCPDTBT is doped with F4TCNQ (6%, w/w). UV-vis and Fourier transform infrared spectroscopy (FTIR) results indicate the occurrence of p-doping, which results in higher bulk conductivity. The high conductivity leads to an impressive overall efficiency of 15.1%, which is considerably higher than the pristine PCPDTBT based devices (9.2%). The superior performance obtained should be largely attributed to the significant enhancement of the photocurrent density strongly correlated with a more efficient charge collection. This is the highest efficiency reported so far for PCPDTBT-based PSCs. Thus, molecularly p-doping has been demonstrated to be an effective strategy for further improving the performance of a wide range of D-A and other types of polymeric HTMs in PSCs.
  •  
46.
  • Yu, Ze, et al. (författare)
  • Incompletely solvated ionic liquid mixtures as electrolyte solvents for highly stable dye-sensitized solar cells
  • 2013
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 3:6, s. 1896-1901
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionic liquids have been intensively investigated as alternative stable electrolyte solvents for dye-sensitized solar cells (DSCs). A highest overall conversion efficiency of over 8% has been achieved using a ionic-liquid-based electrolyte in combination with an iodide/triiodide redox couple. However, the relatively high viscosities of ionic liquids require higher iodine concentration in the electrolyte due to mass-transport limitations of the triiodide ions. The higher iodine concentration significantly reduces the photovoltaic performance, which normally are lower than those using organic solvent-based electrolytes. Here, the concept of incompletely solvated ionic liquid mixtures (ISILMs) is introduced and represents a conceptually new type of electrolyte solvent for DSCs. It is found that the photovoltaic performance of ISILM-based electrolytes can rival that of organic solvent-based electrolytes. Furthermore, the vapor pressures of ISILMs are found to be considerably lower than that for pure organic solvents. Stability tests show that ISILM-based electrolytes provide highly stable DSCs under light soaking conditions. Thus, ISILM-based electrolytes offer a new platform to develop more efficient and stable DSC devices of relevance to future large-scale applications.
  •  
47.
  • Yu, Ze, et al. (författare)
  • Inorganic Hole-Transporting Materials for Perovskite Solar Cells
  • 2018
  • Ingår i: Small Methods. - : John Wiley and Sons Inc.. - 2366-9608. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last few years, inorganic–organic metal halide perovskite solar cells (PSCs) have attracted a great deal of attention as a promising next-generation solar-cell technology because of their high efficiencies and low production cost. Hole-transporting materials (HTMs) play an essential role in effective charge extraction and thus in achieving high overall efficiency. Therefore, searching for an efficient, stable, and low-cost HTM in PSCs has been one of the hottest research topics in this field. Inorganic p-type semiconductors that possess several appealing characteristics, such as suitable energy levels, high hole mobility, and high chemical stability, as well as low production cost, etc., are promising HTM candidate materials in PSCs. Here, specific attention is paid to the recent progress in inorganic HTMs being explored for PSCs. A variety of methods developed for the fabrication of these inorganic HTMs are summarized in detail, together with their corresponding performance in PSCs. Finally, an outlook on further enhancements of highly efficient PSCs based on inorganic HTMs is presented.
  •  
48.
  • Yu, Ze, et al. (författare)
  • Investigation of Cation Effects in the Electrolytes for Dye-Sensitized Solar Cells
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • A comparison of the effects of the cations of lithium, sodium and guanidinium in electrolytes for dye-sensitized solar cells have been investigated. Upon addition of cations to the reference electrolyte, short-circuit currents are generally found to be significantly enhanced, largely due to the positive shift of the conduction band edge (CB) in the TiO2. This probably results in an increase of the electron injection yield from the excited state of the sensitizing dye to the CB of TiO2. The open-circuit voltages for electrolytes incorporating lithium and sodium cations, however, are found to be slightly lower in comparison to the reference electrolyte. This may be attributed to the more positive shift of the conduction band edge in the TiO2. On the contrary, a slight improvement of the open-circuit voltage for electrolytes containing higher concentrations of guanidinium cations is observed relative to the reference electrolyte. This can most likely be ascribed to the collective effect of a much longer electron lifetime in the TiO2 and less positive shift of the CB. The electrolyte higher concentrations of guanidinium cations exhibits the optimal overall conversion efficiency among all the electrolytes investigated. the optimal performance can be attributed to the dual gain in both short-circuit current and open-circuit voltage with respect to the reference electrolyte.
  •  
49.
  • Yu, Ze, et al. (författare)
  • Investigation of Iodine Concentration Effects in Electrolytes for Dye-Sensitized Solar Cells
  • 2010
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 114:23, s. 10612-10620
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work describes the effects of different iodine concentrations and iodine-to-iodide ratios in electrolytes for dye-sensitized solar cells based on low-viscous, binary ionic liquid and organic liquid solvents. Current-voltage characteristics, photoelectrochemical measurements, electrochemical impedance spectroscopy, and Raman spectroscopy were used for characterization. Optimal short-circuit current and overall conversion efficiency were achieved using intermediate and low iodine concentration in ionic liquid-based and acetonitrile-based electrolytes, respectively. Results from photoelectrochemical and Raman-spectroscopic measurements reveal that both triiodide mobility and chemical availability affect the optimal iodine concentration required in these two types of electrolytes. The higher iodine concentrations required for the ionic liquid-based electrolytes partly compensate for these effects, although negative effects from higher recombination losses and light absorption of iodine-containing species start to become significant.
  •  
50.
  • Yu, Ze, et al. (författare)
  • Liquid electrolytes for dye-sensitized solar cells
  • 2011
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 40:40, s. 10289-10303
  • Tidskriftsartikel (refereegranskat)abstract
    • The present review offers a survey of liquid electrolytes used in dye-sensitized solar cells from the beginning of photoelectrochemical cell research. It handles both the solvents employed, and the prerequisites identified for an ideal liquid solvent, as well as the various effects of electrolyte solutes in terms of redox systems and additives. The conclusions of the present review call for more detailed molecular insight into the electrolyte-electrode interface reactions and structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 68
Typ av publikation
tidskriftsartikel (64)
forskningsöversikt (2)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (64)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Sun, Licheng, 1962- (24)
Sun, Licheng (19)
Hagfeldt, Anders (17)
Kloo, Lars (11)
Krogh, Vittorio (4)
Khaw, Kay-Tee (4)
visa fler...
Riboli, Elio (4)
Wang, Mei (4)
Haiman, Christopher ... (4)
Berndt, Sonja I (4)
Chanock, Stephen J (4)
Gapstur, Susan M (4)
Stevens, Victoria L (4)
Giles, Graham G (4)
Johansen, Christoffe ... (4)
White, Emily (4)
Peters, Ulrike (4)
Severi, Gianluca (4)
Jenab, Mazda (4)
Boschloo, Gerrit (4)
Hallmans, Göran (4)
Hoover, Robert N. (4)
Lissowska, Jolanta (4)
Shu, Xiao-Ou (4)
Zheng, Wei (4)
Kraft, Peter (4)
Garcia-Closas, Monts ... (4)
Chatterjee, Nilanjan (4)
Buring, Julie E. (4)
Gaziano, J Michael (4)
Kolonel, Laurence N (4)
Yeager, Meredith (4)
Hunter, David J (4)
Duell, Eric J. (4)
Henriksson, Roger (4)
Black, Amanda (4)
Yu, Kai (4)
Olson, Sara H. (4)
Davis, Faith G. (4)
Melin, Beatrice S. (4)
Amos, Christopher (4)
Fuchs, Charles S (4)
Bracci, Paige M (4)
Giovannucci, Edward ... (4)
Hankinson, Susan E (4)
Holly, Elizabeth A (4)
Hutchinson, Amy (4)
Jacobs, Kevin B (4)
Kooperberg, Charles (4)
Kurtz, Robert C (4)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (51)
Uppsala universitet (11)
Umeå universitet (5)
Lunds universitet (3)
Stockholms universitet (2)
Linnéuniversitetet (2)
visa fler...
Karolinska Institutet (2)
Göteborgs universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (68)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (51)
Teknik (9)
Medicin och hälsovetenskap (6)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy