SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yuan CL) "

Sökning: WFRF:(Yuan CL)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Feng, Q, et al. (författare)
  • Causal associations between urinary sodium with body mass, shape and composition: a Mendelian randomization study
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 17475-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies have found associations between urinary sodium (UNa) with obesity, body shape and composition; but the findings may be biased by residual confounding. The objective of this two-sample Mendelian randomization (MR) study was to analyze their causal associations in both sex-combined and sex-specific models. Genome-wide association studies of UNa, body mass index (BMI), BMI-adjusted waist-to-hip ratio (WHR), body fat (BF) percentage and estimated glomerular filtration rate (eGFR) were identified. We initially extracted fifty SNPs associated with UNa at significance level of 5 × 10–8, but further removed those SNPs with potential horizontal pleiotropy. Univariable and multivariable MR with adjustment for eGFR were performed. Inverse-variance weighted MR was performed as the primary analysis, with MR-Egger methods as sensitivity analysis. The potential bidirectional association between BMI and UNa was investigated. All exposure and outcomes were continuous, and the effect measure was regression coefficients (beta) and their 95% confidence intervals (95% CI). The total sample size was up to 322 154. UNa was causally associated with increased BMI in both men [eGFR-adjusted beta 0.443 (0.163–0.724)] and women [0.594 (0.333–0.855)]. UNa caused BF percentage increase in men [0.622 (0.268–0.976)] and women [0.334 (0.007–0.662)]. UNa significantly elevated BMI-adjusted WHR in men [0.321 (0.094–0.548)], but not in women [0.170 (− 0.052 to 0.391)]. Additionally, we found that BMI causally increased UNa [0.043 (0.023–0.063)]. UNa increased BMI and BF percentage. Salt intake affects male body shape by increasing BMI-adjusted WHR, but showed no effects on female body shape. The bidirectional association between BMI and UNa suggested that salt reduction measures and weight reduction measures should be implemented simultaneously to break the vicious cycle and gain more health benefits.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy