SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zaccaria M) "

Sökning: WFRF:(Zaccaria M)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martin, P., et al. (författare)
  • Overview of the RFX-mod fusion science programme
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104018-
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q edge < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Martin, P., et al. (författare)
  • Overview of the RFX fusion science program
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 51:9, s. 094023-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.
  •  
7.
  • Allaria, E., et al. (författare)
  • Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885. ; 6:10, s. 699-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.
  •  
8.
  • Lorenzini, R., et al. (författare)
  • Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas
  • 2009
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 5:8, s. 570-574
  • Tidskriftsartikel (refereegranskat)abstract
    • In the quest for new energy sources, the research on controlled thermonuclear fusion has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.
  •  
9.
  • Martin, P., et al. (författare)
  • Overview of RFX-mod results
  • 2009
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104019-
  • Tidskriftsartikel (refereegranskat)abstract
    • With the exploration of the MA plasma current regime in up to 0.5 s long discharges, RFX-mod has opened new and very promising perspectives for the reversed field pinch (RFP) magnetic configuration, and has made significant progress in understanding and improving confinement and in controlling plasma stability. A big leap with respect to previous knowledge and expectations on RFP physics and performance has been made by RFX-mod since the last 2006 IAEA Fusion Energy Conference. A new self-organized helical equilibrium has been experimentally achieved ( the Single Helical Axis-SHAx-state), which is the preferred state at high current. Strong core electron transport barriers characterize this regime, with electron temperature gradients comparable to those achieved in tokamaks, and by a factor of 4 improvement in confinement time with respect to the standard RFP. RFX-mod is also providing leading edge results on real-time feedback control of MHD instabilities, of general interest for the fusion community.
  •  
10.
  • Jung, Christian, et al. (författare)
  • A comparison of very old patients admitted to intensive care unit after acute versus elective surgery or intervention
  • 2019
  • Ingår i: Journal of critical care. - : W B SAUNDERS CO-ELSEVIER INC. - 0883-9441 .- 1557-8615. ; 52, s. 141-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to evaluate differences in outcome between patients admitted to intensive care unit (ICU) after elective versus acute surgery in a multinational cohort of very old patients (80 years; VIP). Predictors of mortality, with special emphasis on frailty, were assessed.Methods: In total, 5063 VIPs were induded in this analysis, 922 were admitted after elective surgery or intervention, 4141 acutely, with 402 after acute surgery. Differences were calculated using Mann-Whitney-U test and Wilcoxon test. Univariate and multivariable logistic regression were used to assess associations with mortality.Results: Compared patients admitted after acute surgery, patients admitted after elective surgery suffered less often from frailty as defined as CFS (28% vs 46%; p < 0.001), evidenced lower SOFA scores (4 +/- 5 vs 7 +/- 7; p < 0.001). Presence of frailty (CFS >4) was associated with significantly increased mortality both in elective surgery patients (7% vs 12%; p = 0.01), in acute surgery (7% vs 12%; p = 0.02).Conclusions: VIPs admitted to ICU after elective surgery evidenced favorable outcome over patients after acute surgery even after correction for relevant confounders. Frailty might be used to guide clinicians in risk stratification in both patients admitted after elective and acute surgery. 
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Ferrari, M. L., et al. (författare)
  • Pressurized SOFC system fuelled by biogas : Control approaches and degradation impact
  • 2020
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884140
  • Konferensbidrag (refereegranskat)abstract
    • This paper shows control approaches for managing a pressurized Solid Oxide Fuel Cell (SOFC) system fuelled by biogas. This is an advanced solution to integrate the high efficiency benefits of a pressurized SOFC with a renewable source. The operative conditions of these analyses are based on the matching with an emulator rig including a T100 machine for tests in cyber-physical mode (a real-time model including components emulated in the rig, operating in parallel with the experimental facility and used to manage some properties in the plant, such as the turbine outlet temperature set-point and the air flow injected in the anodic circuit). The T100 machine is a microturbine able to produce a nominal electric power output of 100 kW. So, the paper presents a real-time model including the fuel cell, the off-gas burner, and the recirculation lines. Although the microturbine components are planned to be evaluated with the hardware devices, the model includes also the T100 expander for machine control reasons, as detailed presented in the devoted section. The simulations shown in this paper regard the assessment of an innovative control tool based on the Model Predictive Control (MPC) technology. This controller and an additional tool based on the coupling of MPC and PID approaches were assessed against the application of Proportional Integral Derivative (PID) controllers. The control targets consider both steady-state (e.g. high efficiency solutions) and dynamic aspects (stress smoothing in the cell). Moreover, different control solutions are presented to operate the system during fuel cell degradation. The results include the system response to load variations, and SOFC voltage decrease. Special attention is devoted to the fuel cell system constraints, such as temperature and time-dependent thermal gradient. Considering the simulations including SOFC degradation, the MPC was able to decrease the thermal stress, but it was not able to compensate the degradation. On the other hand, the tool based on the coupling of the MPC and the PID approaches produced the best results in terms of set-point matching, and SOFC thermal stress containment.
  •  
20.
  • Ferrari, M. L., et al. (författare)
  • Pressurized SOFC System Fuelled by Biogas : Control Approaches and Degradation Impact
  • 2021
  • Ingår i: Journal of engineering for gas turbines and power. - : American Society of Mechanical Engineers (ASME). - 0742-4795 .- 1528-8919. ; 143:6
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper shows control approaches for managing a pressurized solid oxide fuel cell (SOFC) system fuelled by biogas. This is an advanced solution to integrate the high efficiency benefits of a pressurized SOFC with a renewable source. The operative conditions of these analyses are based on the matching with an emulator rig including a T100 machine for tests in cyber-physical mode. So, this paper presents a real-time model including the fuel cell, the off-gas burner (OFB), and the recirculation lines. Although the microturbine components are planned to be evaluated with the hardware devices, the model includes also the T100 expander for machine control reasons. The simulations shown in this paper regard the assessment of an innovative control tool based on the model predictive control (MPC) technology. This controller and an additional tool based on the coupling of MPC and proportional integral derivative (PID) approaches were assessed against the application of PID controllers. The control targets consider both steady-state and dynamic aspects. Moreover, different control solutions are presented to operate the system during fuel cell degradation. The results include the system response to load variations, and SOFC voltage decrease. Considering the simulations including SOFC degradation, the MPC was able to decrease the thermal stress, but it was not able to compensate the degradation. On the other hand, the tool based on the coupling of the MPC and the PID approaches produced the best results in terms of set-point matching, and SOFC thermal stress containment.
  •  
21.
  • Mantelli, L., et al. (författare)
  • A degradation diagnosis method for gas turbine - fuel cell hybrid systems using Bayesian networks
  • 2020
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884140
  • Konferensbidrag (refereegranskat)abstract
    • During the last decades there has been a rise of awareness regarding the necessity to increase energy systems efficiency and reduce carbon emissions. These goals could be partially achieved through a greater use of gas turbine - solid oxide fuel cell hybrid systems to generate both electric power and heat. However, this kind of systems are known to be delicate, especially due to the fragility of the cell, which could be permanently damaged if its temperature and pressure levels exceed their operative limits. This could be caused by degradation of a component in the system (e.g. the turbomachinery), but also by some sensor fault which leads to a wrong control action. To be considered commercially competitive, these systems must guarantee high reliability and their maintenance costs must be minimized. Thus, it is necessary to integrate these plants with an automated diagnosis system capable to detect degradation levels of the many components (e.g. turbomachinery and fuel cell stack) in order to plan properly the maintenance operations, and also to recognize a sensor fault. This task can be very challenging due to the high complexity of the system and the interactions between its components. Another difficulty is related to the lack of sensors, which is common on commercial power plants, and makes harder the identification of faults in the system. This paper aims to develop and test Bayesian belief network based diagnosis methods, which can be used to predict the most likely degradation levels of turbine, compressor and fuel cell in a hybrid system on the basis of different sensors measurements. The capability of the diagnosis systems to understand if an abnormal measurement is caused by a component degradation or by a sensor fault is also investigated. The data used both to train and to test the networks is generated from a deterministic model and later modified to consider noise or bias in the sensors. The application of Bayesian belief networks to fuel cell - gas turbine hybrid systems is novel, thus the results obtained from this analysis could be a significant starting point to understand their potential. The diagnosis systems developed for this work provide essential information regarding levels of degradation and presence of faults in gas turbine, fuel cell and sensors in a fuel cell - gas turbine hybrid system. The Bayesian belief networks proved to have a good level of accuracy for all the scenarios considered, regarding both steady state and transient operations. This analysis also suggests that in the future a Bayesian belief network could be integrated with the control system to achieve safer and more efficient operations of these plants.
  •  
22.
  • Marzi, E., et al. (författare)
  • Power-to-Gas for energy system flexibility under uncertainty in demand, production and price
  • 2023
  • Ingår i: Energy. - : Elsevier Ltd. - 0360-5442 .- 1873-6785. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • The growing penetration of non-programmable renewable energy sources and the consequent fluctuations in energy prices and availability lead to the need to enhance energy system flexibility and synergies between different energy vectors. This can be reached through sector integration. Among the most relevant technologies used for this purpose, Power-to-Gas systems allow excess renewable electricity to be converted directly into fuels that can be then stored or used. A smart energy system, however, which includes these innovative solutions, requires intelligent management methods to optimize its operation. This work investigates the operational strategy of energy systems integrated with Power-to-Gas solutions for seasonal storage, by developing an optimization model for the system, formulated as Mixed-Integer Linear Programming problem. The algorithm tackles the uncertain nature of future disturbances, such as energy needs, generation and price using two-stage stochastic programming. The algorithm is tested on grid-connected and 100% renewable energy supply case studies. The novel stochastic algorithm allows a more robust optimization compared to a deterministic optimization, and system management is ensured under several future disturbances realization. Furthermore, the integration of Power-to-Gas solutions warrants the energy security of the energy systems and acts as a buffer to forestall unpredictable behavior of the disturbances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy