SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zaharchuk Greg) "

Sökning: WFRF:(Zaharchuk Greg)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donahue, Manus J, et al. (författare)
  • Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease
  • 2018
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 38:9, s. 1391-1417
  • Forskningsöversikt (refereegranskat)abstract
    • Cerebrovascular disease (CVD) remains a leading cause of death and the leading cause of adult disability in most developed countries. This work summarizes state-of-the-art, and possible future, diagnostic and evaluation approaches in multiple stages of CVD, including (i) visualization of sub-clinical disease processes, (ii) acute stroke theranostics, and (iii) characterization of post-stroke recovery mechanisms. Underlying pathophysiology as it relates to large vessel steno-occlusive disease and the impact of this macrovascular disease on tissue-level viability, hemodynamics (cerebral blood flow, cerebral blood volume, and mean transit time), and metabolism (cerebral metabolic rate of oxygen consumption and pH) are also discussed in the context of emerging neuroimaging protocols with sensitivity to these factors. The overall purpose is to highlight advancements in stroke care and diagnostics and to provide a general overview of emerging research topics that have potential for reducing morbidity in multiple areas of CVD.
  •  
2.
  • Haller, Sven, et al. (författare)
  • Arterial Spin Labeling Perfusion of the Brain : Emerging Clinical Applications
  • 2016
  • Ingår i: Radiology. - : Radiological Society of North America (RSNA). - 0033-8419 .- 1527-1315. ; 281:2, s. 337-356
  • Forskningsöversikt (refereegranskat)abstract
    • Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed.
  •  
3.
  •  
4.
  • Hamilton, Paul, et al. (författare)
  • Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent C-11-raclopride positron emission tomography and functional magnetic resonance imaging investigation
  • 2018
  • Ingår i: Translational Psychiatry. - : NATURE PUBLISHING GROUP. - 2158-3188. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is characterized by the altered integration of reward histories and reduced responding of the striatum. We have posited that this reduced striatal activation in MDD is due to tonically decreased stimulation of striatal dopamine synapses which results in decremented propagation of information along the corticostriatal-pallido-thalamic (CSPT) spiral. In the present investigation, we tested predictions of this formulation by conducting concurrent functional magnetic resonance imaging (fMRI) and C-11-raclopride positron emission tomography (PET) in depressed and control (CTL) participants. We scanned 16 depressed and 14 CTL participants with simultaneous fMRI and C-11-raclopride PET. We estimated raclopride binding potential (BPND), voxel-wise, and compared MDD and CTL samples with respect to BPND in the striatum. Using striatal regions that showed significant between-group BPND differences as seeds, we conducted whole-brain functional connectivity analysis using the fMRI data and identified brain regions in each group in which connectivity with striatal seed regions scaled linearly with BPND from these regions. We observed increased BPND in the ventral striatum, bilaterally, and in the right dorsal striatum in the depressed participants. Further, we found that as BPND increased in both the left ventral striatum and right dorsal striatum in MDD, connectivity with the cortical targets of these regions (default-mode network and salience network, respectively) decreased. Deficits in stimulation of striatal dopamine receptors in MDD could account in part for the failure of transfer of information up the CSPT circuit in the pathophysiology of this disorder.
  •  
5.
  • Khalighi, Mohammad Mehdi, et al. (författare)
  • Validation of an image derived input function estimation method on PET/MR
  • 2017
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 58:S1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Objectives: The study objective was to validate a recently introduced non-invasive image derived input function (IDIF) estimation method with the gold standard arterial blood sampling.Methods: Six subjects (31-50 years old) were injected with 408±62 MBq of 15O-water simultaneously with the start of a 10 min PET scan on the SIGNA PET-MR (GE Healthcare, WI, Waukesha). During PET scanning, a sagittal vascular (inhance 3D velocity) MR series was used with the following parameters: TR=8.7 ms, TE=4.1 ms, FOV=24×21.6 cm, slice thickness=3 mm, 32 slices, velocity encoding=40, phase acceleration=2.0, and scan time=1:21 min. The PET list file was unlisted for every second and total true and scatter coincident events were plotted to identify tracer arrival into the brain arteries. Then, a short time frame over the arrival of the tracer to the cervical region was reconstructed to obtain a PET angiogram. The cervical arteries were then segmented using the MR vascular images and PETA images. Spill-over and spill- in artifacts were estimated using PETA images and the actual arterial volume was measured from the MR vascular images. The PET list file was unlisted and images were reconstructed for every 1 s for the first 30 s, every 3 s for the next 30 s, every 5 s for the 2nd minute, every 10 s for the 3rd and 4th minute and every 30 s for 5th to 10th minutes. The AIF was estimated by dividing total counts from the cervical arteries of each frame by the MR-based arterial volume. For each patient, blood samples were continuously drawn from the radial artery at the wrist using a peristaltic pump, and the tracer concentration in the arterial blood was measured using a Twilite two detector (Swisstrace) to estimate the AIF. In order to calculate the AIF at the brain arteries from these blood samples, the delay and dispersion of the arterial input function was corrected using standard PET-based methods. The CBF and distribution volume were calculated using both the IDIF method and the blood samples by minimizing the mean square of the error between the PET observations and model fit using the Nelder-Mead simplex algorithm in MATLAB (Mathworks, Wilmington, MA).Results: Figure 1 shows the (a) PETA and (b) MR vascular images for one of the patients. The PETA images clearly show the arteries and the extent of the spill-over. Figure 2 compares the AIF curve estimated by the proposed IDIF method and the AIF curve measured by the blood samples. The comparison shows excellent correspondence between the IDIF method and the gold standard blood sampling method with 9% and 11% difference for the 1st pass and the entire AIF, respectively. The IDIF captures the AIF peak correctly and has increased signal-to-noise ratio compared to the blood sampling method. The delay and the dispersion of the AIF curve is nearly identical between the two methods. The CBF over the whole brain was measured 29.5±8.7 and 27.0±14 ml/s/100g with the AIF measured by IDIF method and blood samples, respectively with a mean difference of 14% between the two methods. The volume distribution over the whole brain was measured 0.5±0.1 for both methods with a mean difference of 15% between them.Conclusion: As the results show, the proposed method is capable of determining a high fidelity IDIF from simultaneous PET/MRI data. Having a “blood-free” method that obviates the need for direct arterial sampling is of benefit to both investigators and their subjects, because of the high costs, inconvenience, and potential risks associated with arterial cannulation. It has applications beyond 15O-water PET, enabling pharmacokinetic modeling to be performed that is required for quantitative PET tracer studies. Research Support: GE Healthcare, Stanford University Lucas Center, Uppsala University.
  •  
6.
  • Lindner, Thomas, et al. (författare)
  • Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging.
  • 2023
  • Ingår i: Magnetic Resonance in Medicine. - : John Wiley & Sons. - 0740-3194 .- 1522-2594. ; 89:5, s. 2024-2047
  • Tidskriftsartikel (refereegranskat)abstract
    • This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.
  •  
7.
  • Veit-Haibach, Patrick, et al. (författare)
  • International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology
  • 2023
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Nature. - 1619-7070 .- 1619-7089. ; 50:12, s. 3513-3537
  • Tidskriftsartikel (refereegranskat)abstract
    • The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging.The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy